U. sability Engineering

JAKOB NIELSEN

SunSoft
2550 Garcia Avenue
Mountain View, California

M <

Morgan Kaufmann

AN IMPRINT OF ACADEMIC PRESS
A Harcourt Science and Technology Company

San Diego San Francisco New York Boston
London Sydney Tokyo

This book is printed on acid-free paper. o)
Copyright © 1993 by Academic Press

All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopy, recording, or any
information storage and retrieval system, without permission in writing from the
publisher.

All brand names and product names mentioned in this book are trademarks or
registered trademarks of their respective companies.

Requests for permission to make copies of any part of the work should be mailed to
the following address: Permissions Department, Harcourt, Inc., 6277 Sea Harbor
Drive, Orlando, Florida 32887-6777.

Academic Press

A Harcourt Science and Technology Company

525 B Street, Suite1900, San Diego, CA 92101-4495 USA
http://www.academicpress.com

Academic Press

24-28 Oval Road, London NW1 7DX United Kingdom
http://www.hbuk.co.uk/ap/

Morgan Kaufmann

340 Pine Street, Sixth Floor, San Francisco, CA 94101-3205
http://www.mkp.com

Library of Congress Catalog Card Number: 93000488

ISBN: 1-12-518406-9

PRINTED IN THE UNITED STATES OF AMERICA
99 00 01 02 BB 12 11 10 9 8

http://www.academicpress.com
http://www.hbuk.co.uk/
http://www.mkp.com

Table of Contents

Preface ix

Audience ix
Teaching Usability Engineering xi
Acknowledgments xiii

Chapter 1 Executive Summary 1
1.1 Cost Savings 2
1.2 Usability Now! 8
1.3 Usability Slogans 10
14 Discount Usability Engineering 17
1.5 Recipe For Action 21

Chapter 2 What Is Usability? 23

2.1
2.2
2.3

24
25

Usability and Other Considerations 24
Definition of Usability 26

Example: Measuring the Usability of
Icons 37

Usability Trade-Offs 41

Categories of Users and

Individual User Differences 43

Usability Engineering

Chapter 3 Generations of User Interfaces 49
3.1 Batch Systems 51
3.2 Line-Oriented Interfaces 52
3.3 Full-Screen Interfaces 54
3.4 Graphical User Interfaces 57
3.5 Next-Generation Interfaces 62
3.6 Long-Term Trends in Usability 67
Chapter 4 The Usability Engineering Lifecycle 71
41 Know the User 73
42 Competitive Analysis 78
43 Goal Setting 79
4.4 Parallel Design 85
4.5 Participatory Design 88
4.6 Coordinating the Total Interface 90
4.7 Guidelines and Heuristic Evaluation 91
4.8 Prototyping 93
49 Interface Evaluation 102
4.10 Iterative Design 105
411 Follow-Up Studies of Installed Systems 109
412 Meta-Methods 111
413 Prioritizing Usability Activities 112
414 Be Prepared 113
Chapter 5 Usability Heuristics 115
5.1 Simple and Natural Dialogue 115
52 Speak the Users’ Language 123
53 Minimize User Memory Load 129
54 Consistency 132
5.5 Feedback 134
5.6 Clearly Marked Exits 138
5.7 Shortcuts 139
5.8 Good Error Messages 142
59 Prevent Errors 145
5.10 Help and Documentation 148
5.11 Heuristic Evaluation 155
vi

Table of Contents

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Usability Testing 165

6.1
6.2
6.3
6.4

6.5
6.6
6.7
6.8
6.9

Test Goals and Test Plans 170
Getting Test Users 175
Choosing Experimenters 179

Ethical Aspects of Tests with Human
Subjects 181

Test Tasks 185

Stages of a Test 187
Performance Measurement 192
Thinking Aloud 195

Usability Laboratories 200

Usability Assessment Methods beyond
Testing 207

7.1
72
7.3
7.4
7.5
7.6

Observation 207

Questionnaires and Interviews 209
Focus Groups 214

Logging Actual Use 217

User Feedback 221

Choosing Usability Methods 223

Interface Standards 227

8.1

8.2

National, International and Vendor
Standards 231

Producing Usable In-House Standards 233

International User Interfaces 237

9.1
9.2
9:3
9.4
9.5

International Graphical Interfaces 239
International Usability Engineering 242
Guidelines for Internationalization 247
Resource Separation 251

Multilocale Interfaces 253

vii

Usability Engineering

Chapter 10 Future Developments 255

10.1
10.2
10.3

10.4

Theoretical Solutions 256
Technological Solutions 260

CAUESE Tools: Computer-Aided Usability
Engineering 264

Technology Transfer 265

Appendix A Exercises 269

Appendix B Bibliography 283

B.1
B.2
B.3
B.4
B.5
B.6

B.7
B.8
B.9

Conference Proceedings 284
Journals 286

Introductions and Textbooks 290
Handbook 291

Reprint Collections 292

Important Monographs and Collections of
Original Papers 294

Guidelines 300
Videotapes 302
Other Bibliographies 304

B.10 References 306

Author Index 341

Subject Index 351

viii

Preface

Software developed in recent years has been devoting an average
of 48% of the code to the user interface [Myers and Rosson 1992]. It
would thus seem justified to allocate a reasonable proportion of the
effort in software development projects to ensuring the usability of
these user interfaces. This book tells you what to do if you decide
to improve usability.

The main goal of the book is to provide concrete advice and
methods that can be systematically employed to ensure a high
degree of usability in the final user interface. To arrive at the perfect
user interface, one also needs genius, a stroke of inspiration, and
plain old luck. Even the most gifted designers, however, would be
pressing their luck foo far if they were to ignore systematic usability
engineering methods.

Audience

The book has a very wide intended audience. First of all, it is natu-
rally intended for the people who actually design and develop
computer systems and user interfaces since these individuals have
the ultimate power to improve usability. The book is crammed
with practical advice for including usability considerations in the

ix

Usability Engineering

software engineering process, and developers and project
managers should read through the entire book. The book is also
intended for people who design documentation, help systems, and
training courses, since these are elements of the “total user inter-
face” just as much as the screen designs. This book is not intended
to teach technical writing as such, but it can help writers produce
support materials that users will find easier to use.

Furthermore, large parts of the book should be helpful to the users
themselves and to computer support managers who need to deter-
mine which computer systems and software to recommend to their
users. Even though it is fairly rare for customer organizations to
perform their own usability testing, there is no reason why a large
organization should not use some of the techniques in Chapter 6,
Usability Testing, to compare software packages and whole
systems before deciding on what to buy. Smaller organizations and
individual users can use the definitions in Chapter 2, What Is
Usability?, and the usability principles in Chapter 5, Usability
Heuristics, as a checklist to consider whether an interface seems
usable before buying it. Multinational corporations and other inter-
national organizations should benefit from Chapter 9, International
User Interfaces, when planning the requirements for their informa-
tion systems. Finally, user organizations that contract out for soft-
ware development can use Chapter 4, The Usability Engineering
Lifecycle, and Chapter 8, Interface Standards, to help set require-
ments that will ensure the usability of the product they will eventu-
ally receive from their vendor.

The executive summary in Chapter 1 is intended to help those
readers who may not have time to read the entire book. It is espe-
cially intended for managers who are considering whether their
companies are devoting sufficient effort to usability and what
concrete steps they can request to ensure improved usability of
their systems. It should be read by all readers, however, as it is not
just a summary; it also addresses several topics that are not covered
in the rest of the book, such as the cost/benefit trade-offs of taking
human factors seriously.

Preface

Most of the examples in the book come from user interfaces to
computer systems. The methods can be used for the development
of interfaces to any kind of interactive system, including most
consumer electronics products, and they are even useful for the
development of certain information-intensive types of noninterac-
tive products such as computer printouts, time tables, and driving
directions. For example, van Nes and van Itegem [1990] describe
the use of a logging method (see also page 216 ff.) in a usability
study of an advanced car radio with 37 functions. For half a year,
four drivers had every use of practically all of these functions from
their new car radio automatically recorded. The results showed
that some of the novel features went unused and that others were
used differently than the designers had intended. A follow-up user
interview revealed that the users still had not understood some
features after half a year of use. One user complained that the auto-
search tuning mechanism skipped some radio stations, whereas in
fact it operated at three successive sensitivity levels and would
pick up the missing stations at the second or third scan.

Any object, product, system, or service that will be used by
humans has the potential for usability problems and should be
subjected to some form of usability engineering. Human—computer
interaction serves as the main focus of this book because it is the
author’s special area of expertise and because the potential for
usability problems seems to be especially severe in computers, due
to their ability to implement complex features and intricate interac-
tions. For other kinds of interfaces, slight modifications may have
to be made, but the main principles in this book should still hold.
For example, questionnaires and user testing have been applied to
improve the usability of railroad cars [McCrobie 1989].

Teaching Usability Engineering

Several universities have developed both traditional courses and
continuing education efforts in various aspects of human-
computer interaction [Baecker 1989; Carey 1989; John et al. 1992;
Mantei 1989; Mantei et al. 1991; Preece and Keller 1990, 1991; Strong

xi

Usability Engineering

1989; van der Veer and White 1990]. The Association for
Computing Machinery’s Special Interest Group on Computer—
Human Interaction (ACM SIGCHI) has even developed a recom-
mended curriculum for the teaching of human—computer interac-
tion [ACM SIGCHI 1992]. Typical topics covered in such courses
include theoretical approaches to human—computer interaction, the
implementation of user interfaces, and the actual design of user
interfaces. The latter is often taught through exercises [Nielsen ef al.
1992; Winograd 1990]. In a survey of skills needed by usability
practitioners [Dayton et al. 1993], the four skills rated as having an
importance of more than 9.0 on a 1-10 scale were oral presentation,
dialogue design, task analysis, and usability evaluation. The pres-
ence of presentation skills at the top of the list indicates that no
usability project is conducted in isolation: to be successful, it needs
to impact a larger development team.

Usability engineering as such also seems to be taught more these
days, either as part of a general HCI (human—computer interaction)
course or as a course in its own right [Nielsen and Molich 1989;
Perlman 1988, 1990]. This is especially true of courses taught by
corporate training departments or offered as continuing education
for software engineers.

My main advice for the teaching of usability engineering would be
to base the course firmly in the laboratory. Even though there is a
substantial amount of theory and principles that can be taught in
the auditorium, the most important aspects of design and evalua-
tion require a hands-on approach. Certainly, a required part of any
usability engineering course should be to have the students
conduct a user test with a small number of real users. Not only is
this a good way to teach proper evaluation methodology, but more
important, it is the only way to achieve the required revolutionary
change in student attitudes. Most professional programmers and
computer science students gain profound insights the first time
they actually sit down with test users and observe them struggle
with supposedly “easy” software. This is especially true if the soft-
ware was designed by the programmers or students themselves!

xii

Preface

Appendix A lists several practical exercises touching upon impor-
tant aspects of usability engineering. The way these exercises are
described is mostly intended for self-study readers, but they can
easily be expanded into more elaborate assignments for class use.

Acknowledgments

Many colleagues graciously answered questions about specific
issues, provided comments on the treatment of their special inter-
ests, or even read through the entire manuscript. For this help, I
would like to thank Jeff Abbott (Tivoli Systems), David Ackley
(Bellcore), Alfred V. Aho (Bellcore), Gregory H. Anderson
(Anderson Financial Systems), Mary M. Anthony (Tivoli Systems),
Sonia D. Bot (Bell-Northern Research, Canada), Andreas Buja
(Bellcore), Mike Coble (TRIPOS Associates), Bill Curtis (Software
Engineering Institute), Tom Dayton (Bellcore), Susan T. Dumais
(Bellcore), Lawson J. Dumbeck (Western Washington University),
Tom Emerson (Symantec Corporation), Peter W. Foltz (University
of Colorado), Ellen Francik (Pacific Bell), George Furnas (Bellcore),
Marc Fusco (Bellcore), Thom Gillespie (University of California,
Berkeley), Michael Good (Digital Equipment Corporation), Peter
Henriksen (Microsoft), Hiroshi Ishii (NTT Human Interface Labo-
ratories, Japan), Robert E. Jackson (Space Telescope Science Insti-
tute), Janice James (American Airlines), Jeff Johnson (Hewlett-
Packard Laboratories), Peter R. Jones (Symantec Corporation),
Anker Helms Jorgensen (Copenhagen University, Denmark),
Hannah Kain (Citibag), Alistair Kilgour (Heriot-Watt University,
U.K.), Thomas K. Landauer (Bellcore), Jonathan Levy (Bellcore),
Robert L. Mack (IBM T. J. Watson Research Center), Miles Macleod
(Hatfield Polytechnic, U.K.), Deborah J. Mayhew (Deborah]J.
Mayhew & Associates), Rolf Molich (Baltica Insurance, Denmark),
Michael Muller (U S WEST), Robert M. Mulligan (AT&T Bell Labo-
ratories), Gerhard Nielsen (Denmark’s Radio), Randy Pausch
(University of Virginia), Gary Perlman (Ohio State University),
Steven Poltrock (Boeing Computer Services), Dan Rosenberg
(Borland International), Kjeld Schmidt (Rise National Laboratory,
Denmark), David Schnepper (Borland International), Tom Semple

xiii

Usability Engineering

(Symantec Corporation), Brian Shackel (Loughborough University
of Technology, U.K.), Ben Shneiderman (University of Maryland),
Scott Stornetta (Bellcore), Kurt Sussman (Symantec Corporation),
Desirée Sy (Information Design Solutions), Michael Tauber
(University of Paderborn, Germany), Bruce Tognazzini (SunSoft),
Hirotada Ueda (Hitachi Central Research Laboratory and
FRIEND21 Research Center, Japan), Gerrit van der Veer (Free
University of Amsterdam, The Netherlands), Floris L. van Nes
(Institute for Perception Research/Philips Research Laboratories,
The Netherlands), Robert Virzi (GTE Laboratories), Christopher A.
White (GTech Corporation), Richard Wolf (Lotus Development
Corporation), and Peter Wright (University of York, U.K.).

The resulting book is solely the responsibility of the author, and the
people mentioned above should not be held responsible for the
way I have interpreted their comments and advice. Most of this
book was written while I was on the applied research staff of
Bellcore but it should not be taken as necessarily representing any
official views or policies of Bellcore.

This printing of the book has been updated with a number of liter-
ature references and comments on developments since the book
was first published. Among other things, I added the new synergy
review method, which I invented just a few weeks after sending in
the final copy for the first printing. Mostly, the book is unchanged,
though, since the basics of usability engineering remain fairly
constant and do not vary from year to year.

Jakob Nielsen
Mountain View, California
April 1994

Xiv

chapter 1 Executive Summary

Have you ever seen one of the people who will be users of your
current project?! Have you talked to such a user? Have you visited
the users” work environment and observed what their tasks are,
how they approach these tasks, and what pragmatic circumstances
they have to cope with? Such simple user-centered activities form
the basis of usability engineering. More advanced methods exist
and are covered later in this book, but just a simple field trip to
observe users in their own environment working on real-world
tasks can often provide a wealth of usability insights.

In one example, three one-day visits to branch offices of a medium-
sized insurance company produced a list of 130 usability problems
[Nielsen 1990b]. The system design was sound, and most of the
problems were simple enough to fix once they were known (but, of
course, they would not have been known if it had not been for the
field study). Many of the 130 items were serious problems only for
novice users. However, even very experienced users were esti-
mated to waste at least 10 minutes every day because of usability

1. Note that you have to talk to the individuals who will be using the system.
Talking to the users’ manager or vice president for data processing does not
count since these people are likely to have a completely different under-
standing of the job than the actual users.

Usability Engineering

problems, costing the company large amounts of money in both
labor costs and lost sales opportunities.

The staff was often interrupted by telephone calls or walk-in
clients. Unfortunately, several subsystems were not designed for
interruptions—users lost all of their work if a transaction was not
carried to completion. At one small branch, an agent stated that she
never used the damage-claims subsystem during periods where
she was the only person in the office and had to answer all calls. In
some cases, agents were observed using other agents’ terminals
(and “borrowing” their passwords) to deal with interruptions
rather than quit one of the unforgiving subsystems in the middle of
a transaction.

In another case, the system allowed only one line for error
messages, so it had to give an obscure, truncated version of a long
message. The full message was available by pressing the help key,
PF1, an action the developers in the central data-processing office
felt was very natural. But users in the branch office had not made
the conceptual leap that told them the help key was doubling as an
extended-error-message key. Instead, they wasted a lot of time
trying to understand the truncated message. A better design would
have used the one line on the screen for a brief indication of the
error, followed by “PF1 for more information” or a similar
instruction.

1.1 Cost Savings

There are several well-documented examzples of cost savings from
the use of usability engineering methods.” For example:

¢ When a certain rotary dial telephone was first tested, users were
found to dial fairly slowly. A human factors expert spent one

2. There are more examples of cost savings that are less well documented. As
noted by Chapanis [1991], most case studies fail to meet the rigorous method-
ological requirements that are necessary to be absolutely sure what cost
savings can be attributed to user interface improvements since there are often
several other changes made simultaneously (e.g., [Thompson ef al. 1986]).

Executive Summary

hour to come up with a simple graphical interface element which
speeded up users’ dialing behavior by about 0.15 seconds per
digit, for a total annual saving of about $1,000,000 in reduced
demands on the central switches [Karlin and Klemmer 1989].

* An Australian insurance company had annual savings of
A$536,023 from redesigning its application forms to make
customer errors less likely [Fisher and Sless 1990]. The cost of the
usability project was less than A$100,000. The old forms were so
difficult to fill in that they contained an average of 7.8 errors per
form, making it necessary for company staff to spend more than
one hour per form repairing the errors.

e A major computer company saved $41,700 the first day the
system was in use by making sign-on attempts faster for a secu-
rity application. This increased usability was achieved through
iterative design at a cost of only $20,700 [Karat 1990].

* The 25 “human factors success stories” discussed by Harris
[1984] include the improvement of the Boeing 757 flight deck
interface to allow operation by two instead of three pilots, the
35% increase in alignment speed in a production line for inte-
grated circuits, the reduction from 3,000 words to 150 words of
instructions needed to operate a paging device, and even an
improvement in a drunk-driver detection system that increased
the arrest rate per police officer patrol-hour by 12%.

Unfortunately, the cost savings from increased usability are not
always directly visible to the development organization since they
may not show up until after the release of the product. As an
extreme example, Fisher and Sless [1990] report that the Australian
government can process a tax return for A$2.25 on the average. At
the same time, the average Australian resident spends 11 hours
filling in the form, and 62% of Australians have to use agents to
help do the job. If the complexity of the tax forms were reduced,
these “customers” might therefore realize huge savings in time and
advisor fees, but the government might only save a few cents in
processing costs. In the same way, making a spreadsheet easier to
learn might only save the vendor a small amount in reduced
hotline staffing levels, even though each customer might save
several hours of unnecessary work.

Usability Engineering

Distributed benefits of a few hours per user are hard to measure
and do not immediately add up to hard cash [Sassone 1987]. For
example, redesigning the interface to an oscilloscope increased
user productivity by 77% during the time they were using the
scope [Bailey et al. 1988], but the productivity impact on the total
workday of an engineer was much less dramatic and therefore had
less impact. The customers do save with better interfaces, though,
and these savings presumably translate into a better reputation for
the product and therefore eventually increase sales. Unfortunately,
the effect of having increased usability lead to increased sales has
mostly been documented only anecdotally® In several cases, the
relative usability of competing products is well known in the
industry, and computer salespersons often recommend certain soft-
ware packages on the basis of their usability.

Because much of the financial payoff from usability methods
shows up after the release of the product, some usability specialists
[Grudin et al. 1987] have advocated shifting parts of the responsi-
bility for usability engineering toward middle and upper manage-
ment levels instead of the development managers. Even the
development manager may see some immediate benefits from
usability engineering, however, in the frequent case when early
usability studies reveal that there is no need for certain contem-
plated features. If users’ needs are not known, considerable devel-
opment efforts may be wasted on such features in the mistaken
belief that some users may want them. Users rarely complain that a
system can do too much (they just don’t use the superfluous
features), so such over-design normally does not become suffi-
ciently visible to make the potential development savings explicitly
known. They are there nevertheless.

3. In one of the few documented cases, a usability study of the first version of
a fourth-generation database system revealed 75 usability problems. Twenty
of the most serious problems were fixed in the second release, which gener-
ated 80% higher product revenues than the first release [Wixon and Jones
1994]. This revenue increase was 66% higher than sales projections and so is
probably due to the improvements in usability since field test customers were
reported to point to the user interface as the most significant improvement in
the product.

Executive Summary

Usability studies can often be conducted very quickly and with
small budgets. For example, Bailey [1991] gives an example of a
study that required no more than five and a half hours to find out
that the addition of color did not help users in a certain menu selec-
tion task. A development group could easily have spent many
more staff hours arguing over this design issue in meetings than it
took to resolve it by testing.

A study of software engineering cost estimates showed that 63% of
large software projects significantly overran their estimates
[Lederer and Prasad 1992]. When asked to explain their inaccurate
cost estimates, software managers cited 24 different reasons and,
interestingly, the four reasons that were rated as having the highest
responsibility were all related to usability engineering: frequent
requests for changes by users, overlooked tasks, users’ lack of
understanding of their own requirements, and insufficient user—
analyst communication and understanding. Proper usability engi-
neering methodology will prevent most such problems and thus
substantially reduce cost overruns in software projects.

Even though the use of usability methods definitely involves some
benefits, some managers might hesitate to use them because of
their perceived high cost and complexity. For example, a paper in
the widely read and respected journal Communications of the ACM
estimated that the “costs required to add human factors elements
to the development of software” was $128,330 [Mantei and Teorey
1988]. This sum is several times the total budget for usability in
most smaller companies, and one interface evangelist has actually
found it necessary to warn such small companies against believing
this estimate [Tognazzini 1990]. Otherwise, the result could easily
be that a project manager would discard any attempt at usability
engineering in the belief that the project’s budget could not bear
the cost. Luckily, usability projects can easily be completed at
substantially lower budgets as discussed in the section on Discount
Usability Engineering (page 16). This entire book is aimed at
presenting usability methods that can be used no matter what
budget is available.

Usability Engineering

Bottom Top
Quartile | Median | Quartile
Q1) (Q2) Q)
Project size in person-year 11 23 58
Actual usability budget relative to total 4% 6% 15%
Ideal usability budget relative to total 6% 10% 21%
Actual usability effort in person-years 1.0 1.5 2.0
Ideal usability effort in person-years 1.7 2.3 3.8

Table 1 Results from a survey of the usability budgets of 31 development
projects that had usability engineering activities.

In January 1993, I surveyed 31 development projects that had
usability engineering activities to find how much of their budget
was devoted to usability. Respondents were also asked to estimate
how large the usability budget ideally should be for their project.
The results are shown in Table 1 and indicate that usability
accounted for about 6% of the budgets for these projects and that
the respondents felt that the ideal usability budget would have
been 10%. The ideal desired usability effort in person-years is
essentially independent of project size (r =.12) when three very
large outlier projects of 250-350 person-years are excluded from
the analysis. This result makes some sense in that many usability
activities take about the same time to perform, no matter how diffi-
cult the program is to implement. Very large systems may have
more elements in their user interfaces (screens, dialogue boxes,
menus, etc.), meaning that they may need somewhat more time for
usability activities, though definitely not proportionally more. The
main conclusion to be derived from Table 1 is thus that two person-
years of usability engineering is the median effort to aim for in a
project and that four person-years would be sufficient for most
projects. Of course, the actual amount of usability work needed in a
project will depend on the characteristics of the project.

In a study of several corporations, Wasserman [1989] found that
many leading companies allocated about 4-6% of their research

Executive Summary

and development staff to interface design and usability work. He
believes that 2% is the critical lower limit for designing competi-
tively effective products but acknowledges that many companies
are significantly below that level. There is not necessarily a conflict
between Wasserman’s findings and Table 1. First, the survey in
Table 1 is more recent, and usability has increased in importance in
recent years.? Second, my survey only involved those projects in
the various companies that have active usability engineering
efforts, and many companies still have some projects without any
usability engineering activities, which would contribute to making
their overall usability budgets smaller than the usability budgets
for those projects that had usability activities.

The final budget recommendation for any given product or
company would of course depend on the specific nature of the
projects. If a product is aimed at the population at large, then a
substantial usability effort is probably necessary to ensure broad
acceptance of the product. Similarly, a product that is going to see
substantial daily use in a business can also cost-justify a large
usability investment from the expected savings. And finally, one
would normally recommend a rather limited” usability effort for
systems that are only going to be used by a small number of highly
skilled and trained users.

When considering usability budgets, remember that your system
will be tested for usability even if you don’t do so yourself. Your
customers will do it for you, as they struggle to use the system.
Any usability problems found by users in the field will undermine

4. A 1971 paper estimated that a reasonable level for usability budgets for
non-military systems was about 3% [Shackel 1971], providing some additional
evidence that usability has increased in budget share over the years.

5. “Limited” does not mean “nonexistent,” however. There is always a payoff
to be gained from applying a few, cheap usability methods.

6. For certain applications such as a tactical support system for a fighter pilot
or the control room for an expensive or dangerous plant, small differences in
user performance can be a matter of life or death, and major usability efforts
may be called for even though the users are few and highly trained. Two
thirds of aircraft accidents can be attributed to the cockpit crew rather than to
equipment malfunction and thus could potentially have been avoided with
better human factors [Nagel 1988].

Usability Engineering

your reputation for quality products and the resulting change
requests will be about 100 times more expensive to implement than
changes discovered by yourself in the early phases of the project.

1.2 Usability Now!’

User interfaces are now a much more important part of computers
than they used to be. The revolution in personal computers and
falling hardware prices are making computers available to ever
broader groups of users, and these users are using computers for a
larger variety of tasks. When computers were only used by a small
number of people who mostly performed very specialized tasks, it
made sense to require a high degree of learning and expertise of
the users. Also, computers were once so expensive that it was
reasonable to let users suffer a little if the computer could be
utilized more efficiently. Now it pays to dedicate a large proportion
of the computational resources (CPU cycles, memory use, commu-
nication bandwidth, screen space, development effort) to “nothing
else” than making life easier for the user.

Furthermore, video games and some of the better personal
computer software have shown users that it is possible to produce
pleasant and approachable interfaces, so they are becoming much
less willing to suffer from low usability. Business Week had a cover
story in 1991 entitled “I Can’t Work This ?#!!@ Thing!” [Nussbaum
and Neff 1991], reporting on consumer dissatisfaction with over-
complex interfaces on video recorders and other gadgets and that
several major companies were redesigning their products to make
them easier to use.

Time itself is on the side of increasing the perceived need for
usability since the software market seems to be shifting away from
the “features war” of earlier years [Telles 1990]. User interface
design and customer service will probably generate more added

7. After writing my first draft of this section, I learned that the U.K. Depart-
ment of Trade and Industry (DTI) has a research and development program
that also is called Usability Now! [Wiggins 1991]. So much the better.

Executive Summary

value for computer companies than hardware manufacturing
[Rappaport and Halevi 1991], and user interfaces are a major way
to differentiate products in a market dominated by an otherwise
homogenizing trend toward open systems. Now most software
products have more features than users will ever need or learn, and
Telles [1990] states that the “interface has become an important
element in garnering good reviews” of software in the trade press.®
In an unpublished study from 1990, Tim Frank Andersen from the
Technical University of Denmark read 70 reviews of software prod-
ucts in various personal computer magazines and counted 784
comments on the usability of the reviewed software. This is an
average of 11.2 usability comments per software review. Now,
many of these comments were fairly superficial, but their sheer
number indicates the importance of usability in today’s market-
place. If anything, usability has increased in importance in soft-
ware reviews since the 1990 study to the extent that some personal
computer magazines now have usability laboratories for use in
comparative testing of software products and include usability
statistics like average task times in their reviews [Reed 1992].

Recently, we have even seen political demands for regulations with
respect to usability. Currently, most such political initiatives seem
to be directed toward hardware ergonomics, but some also include
software usability. As further discussed in Chapter 8, several inter-
national user interface standards are currently being developed.
These standards may well gain the force of law in certain countries
and will certainly have great impact in many other countrles
[Stewart 1990]. The European Union has passed a directive’ on
work with display screens stating that since December 31, 1992,

8. The trade magazine InfoWorld assigns explicit weights in its software
reviews: Ease of learning is weighed at 4-10%, ease of use at 8-13%, and
quality of documentation at 5-8%, with the exact weights determined by the
type of application being reviewed. These three review criteria account for
between 18% (spreadsheets) and 30% (word processors) of the final review
scores. Error handling is assigned a further 5-8% of the review weight as a
combined category including both user errors (a usability issue), software
bugs, and recovery from hardware crashes. Notice, by the way, how favorably
these percentages compare with the allocation of 6-10% of a development
project’s budget to usability mentioned on page 6; usability is a comparatively
cheap way to improve product quality.

Usability Engineering

¢ Software must be suitable for the task
* Software must be easy to use
* The principles of software ergonomics must be applied

for all display screen workstations (computers and such) put into
service in the E.U. Even though the requirements are very general
in nature, they still indicate the direction of the political pressure
for increased usability.

1.3 Usability Slogans

Major parts of the usability approach in this book can be summa-
rized in the short slogans given here. You will find that some of the
slogans contradict each other. Unfortunately, usability is filled with
apparent contradictions that are only resolved after more detailed
analysis. Some contradictions and trade-offs will always remain,
and it is the job of the usability engineer to arrive at the best solu-
tion for the individual project’s needs. There are very few hard and
firm rules in usability that do not have some exceptions. For the
full story, read on.

Your Best Guess Is Not Good Enough

A basic reason for the existence of usability engineering is that it is
impossible to design an optimal user interface just by giving it your
best try. Users have infinite potential for making unexpected misin-
terpretations of interface elements and for performing their job in a
different way than you imagine.

Your design will be much better if you work on the basis of an
understanding of the users and their tasks. Then, by all means
design the best interface you can, but make sure to validate it with
user tests and the other methods recommended in this book. It is
no shame to have to revise a user interface design as a result of user

9. Council Directive of May 29, 1990, on the minimum safety and health
requirements for work with display screen equipment (90/270/EEC), Official
Journal of the European Communities No. L 156, 21.6.1990, 14-18.

10

Executive Summary

testing. This happens to the best of usability experts, and it might
indeed be a true measure of usability maturity that one is willing to
acknowledge the need to modify initial design choices to accom-
modate the users. Julius Caesar is widely acknowledged as one of
the greatest generals of antiquity. Even so, his true talent was not
perfect campaign planning but his ability to adjust to the situation
as it evolved. He often placed his legions in highly problematic
situations which they only survived because he changed his plans
to accommodate the facts. If Caesar could conquer France by
admitting his mistakes [Caesar 51 B.C.], then maybe you can win
some market share by admitting yours.

The User Is Always Right

As mentioned, all experience shows that any initial attempt at a
user interface design will include some usability problems. There-
fore, the user interface developer needs to acquire a certain design
humility and acknowledge the need to modify the original design
to accommodate the user’s problems. The designer’s attitude
should be that if users have problems with an aspect of the inter-
face, then this is not because they are stupid or just should have
tried a little harder. Somebody once tested the usability of a user
manual and found that users almost always made a mistake in a
certain step of a particular procedure. Their solution was to frame
the difficult step in a box and add a note saying “Read these instruc-
tions carefully!” Of course, the correct conclusion would have been
that the description was too difficult and should be rewritten.

The User Is Not Always Right

Unfortunately, it does not follow that user interface designs can be
derived just by asking users what they would like. Users often do
not know what is good for them. One example is a study of the
weight of telephone handsets conducted in the 1950s when people
were used to fairly heavy handsets. The result of asking users
whether they would like lighter handsets was no, they were happy
with the handsets they had [Karlin and Klemmer 1989]. Even so, a
test of handsets that looked identical but had different weights
showed that people preferred handsets with about half the then-
normal weight.

11

Usability Engineering

Users have a very hard time predicting how they will interact with
potential future systems with which they have no experience. As
another example, 73% of the respondents in a survey of 9,652
commuters said that they would not use a proposed information
service with continual up-to-the-minute traffic information. But
after they were shown sample screens from a prototype of the
service, 84% of the respondents said that they would in fact use it
[Gray et al. 1990].

Furthermore, users will often have divergent opinions when asked
about details of user interface design. For example, studies of how
people name things [Furnas et al. 1987] have shown that the proba-
bility of having two people apply the same name to an object is
between 7% and 18%, depending on the object, clearly making it
infeasible to design command names just by asking some user.

Users Are Not Designers

The ideal solution to the usability question might be to leave the
design of the interface up to the individual users. Just provide
sufficient customization flexibility, and all users can have exactly
the interface they like. Studies have shown, however, that novice
users do not customize their interfaces even when such facilities
are available [Jergensen and Sauer 1990]. One novice user
exclaimed, “I didn’t dare touch them [the customization features]
in case something went wrong.” Therefore, a good initial interface
is needed to support novice users. Expert users (especially
programmers) do use customization features, but there are still
compelling reasons not to rely on user customization as the main
element of user interface design.

First, customization is easy only if it builds on a coherent design
with good previously designed options from which to choose.
Second, the customization feature itself will need a user interface
and will thus add to the complexity of the system and to the users’
learning load. Third, too much customization leads each user to
have a wildly different interface from the interfaces used by other
users. Such interface variety makes it difficult to get help from
colleagues, even though that is the help method rated highest by

12

Executive Summary

both novice and expert users [Mack and Nielsen 1987]. And fourth,
users may not always make the most appropriate design decisions.

For example, Grudin and Barnard [1985] compared command
abbreviations they defined with abbreviations defined by indi-
vidual users, and found that users made about twice as many
errors when using their own abbreviations. Even when given the
chance to redefine their abbreviations after the experiment, six of
seven test users kept their poor abbreviation sets virtually intact,
typically explaining that while yes, they had some problems with
it, it seemed as good as any other set they could think of. Of course,
users have other jobs and do not work as user interface profes-
sionals.

Designers Are Not Users

System designers are human and they certainly use computers:
both characteristics of users. Therefore, it can be tempting for
designers to trust their own intuition about user interface issues,
since they do share these two important characteristics of the real
users. Unfortunately, system designers are different from users in
several respects, including their general computer experience (and
enthusiasm) and their knowledge of the conceptual foundation of
the design of the system. When you have a deep understanding of
the structure of a system, it is normally easy to fit a small extra
piece of information into the picture and interpret it correctly.
Consequently, a system designer may look at any given screen
design or error message and believe that it makes perfect sense,
even though the same screen or message would be completely
incomprehensible to a user who did not have the same under-
standing of the system.

Knowing about a system is a one-way street. One cannot go back to
knowing nothing. It is almost impossible to disregard the informa-
tion one already knows when trying to assess whether another
piece of information would be easy to understand for a novice user.
Landauer [1988b] uses a hidden animal picture as an analogy for
developers” understanding of their own system. Hidden animal
games, as well as popular children’s books of the type, “Where is so-
and-so?” show images with various levels of details, among which

13

Usability Engineering

is the animal or character one is supposed to find. Initially, it is very
difficult to pick the animal out of the background, but once you
have seen where the animal is, it is very easy to see it again. In fact,
it is impossible to ignore one’s knowledge of where the animal is
and regain a perspective on the picture where one would have to
search to find the animal.

A survey of 2,000 adults in Oregon showed that only 18% could
use a bus schedule to find the time of departure [Egan 1991]. This
finding does not indicate that the remaining 82% of Oregonians are
less intelligent and should never be allowed on a bus.10 Instead, the
likely explanation is that the bus schedule was designed by people
with extensive knowledge of buses and local transportation who
just knew the meaning of every element on the schedule, and there-
fore never considered that parts of it might be difficult to under-
stand for people who rarely take a bus.

Vice Presidents Are Not Users

Many CEOs and other top corporate executives have started to
realize that usability is becoming one of their main competitive
parameters, as user interfaces account for a steadily higher propor-
tion of the value added in their products and services [Sculley
1992]. The downside of this higher visibility for user interfaces is
that these executives may start meddling in user interface design.

Vice presidents and other corporate executives should realize that
they are no more representative of the end users than the devel-
opers are. With the possible exception of management information
systems and other software intended for vice presidents, corporate
executives in a high-tech company are very different from the
average user, and their intuitions about what would make a great
design may not be accurate.

Boies et al. [1985] report that they sometimes had “a powerful
person” in their company propose changes to their interface. They
avoided making these changes by pointing out that this person

10. The same test showed that 97% of Oregonians could read a newspaper
article and that 96% could tabulate two entries on a bank deposit slip.

14

Executive Summary

probably had very different characteristics than the intended users
and that their design had been tested on such real users. Of course,
all design suggestions should be welcomed in order to serve as
inspiration, but one should never be unduly swayed by a comment
from a single person. People get promoted to vice president
because of their managerial and decision-making skills, not
because of their design skills.

Less Is More

One tempting solution to the user interface design problem might
be to throw in any imaginable option or feature. If everything is
there, then everybody should be satisfied, right? Wrong. Every
single element in a user interface places some additional burden on
the user in terms of having to consider whether to use that element.
Having fewer options will often mean better usability because the
users can then concentrate on understanding those fewer options
[Brooks 1975]. Software reviewers are becoming aware that more
features are not always better, and a major popular computer
magazine ran a cover story lamenting the tendency of some
programs to double in size every two years, coining the term
“fatware” to describe bloated software [Perratore et al. 1993]. See
also the discussion of the “less-is-more” principle on page 120.

Details Matter

Unfortunately, usability often depends on minor interface details,
which is why systematic usability engineering work is necessary to
ferret out those details. For example, Simonelli [1989] reports on
the development of instructions for a frozen-dinner microwave
indicator that would gradually change from being white to being
blue. User testing showed that the phrase “turns blue” was much
poorer than “white disappears” for describing this change, even
though the two phrases are logically equivalent relative to this
process. The blue color was not uniform—it was dark blue in some
places and light blue in others— so users were uncertain “how blue
is blue?” when the first wording was used.

15

Usability Engineering

Help Doesn'’t

Sometimes, online help and documentation doesn’t really help the
users [Mack et al. 1983]. That is to say, users often do not find the
information they want in the mass of possible help and documen-
tation and, even if they do find it, they may misinterpret the help.
Also, help adds an extra set of features to a system, thus compli-
cating the interface just by virtue of existing. In any case, the possi-
bility for providing help should not been seen as an excuse to
design a needlessly complex interface. It is always better if users
can operate the system without having to refer to a help system.
Usability is not a quality that can be spread out to cover a poor
design like a thick layer of peanut butter,!! so a user-hostile inter-
face does not get user-friendly even by the addition of a brilliant
help system. See also the section on Help and Documentation
(page 148).

Usability Engineering Is Process

Most of this book consists of advice for activities to perform as part
of the system development process. Readers may sometimes lose
patience and wish that I had just told them about the result rather
than the process: What makes an interface good? Unfortunately, so
many things sometimes make an interface good and sometimes
make it bad that any detailed advice regarding the end product has
to be embellished with caveats, to an extent that makes it close to
useless, not least because there will often be several conflicting
guidelines. In contrast, the usability engineering process is well
established and applies equally to all user interface designs. Each
project is different, and each final user interface will look different,
but the activities needed to arrive at a good result are fairly
constant.

11. The peanut butter metaphor for misapplied usability engineering has been
attributed to Clayton Lewis.

16

Executive Summary

1.4 Discount Usability Engineering

Usability specialists will often propose using the best possible
methodology. Indeed, this is what they have been trained to do in
most universities. Unfortunately, it seems that “Le mieux est
I'ennemi du bien” (the best is the enemy of the good) [Voltaire 1764]
to the extent that insisting on using only the best methods may
result in using no methods at all. Developers and software
managers are sometimes intimidated by the strange terminology
and elaborate laboratory setups employed by some usability
specialists and may choose to abandon usability altogether in the
mistaken belief that impenetrable theory is a necessary require-
ment for usability engineering [Bellotti 1988]. Therefore, I focus on
achieving “the good” with respect to having some usability engi-
neering work performed, even though the methods needed to
achieve this result may not always be the absolutely “best” method
and will not necessarily give perfect results.

It will be easy for the knowledgeable reader to dismiss the methods
proposed here with various well-known counter-examples
showing important usability aspects that will be missed under
certain circumstances. Some counter-examples are no doubt true
and I do agree that better results can be achieved by applying more
careful methodologies. But remember that such more careful
methods are also more expensive—often in terms of money and
always in terms of required expertise (leading to the intimidation
factor discussed above). Therefore, the simpler methods stand a
much better chance of actually being used in practical design situa-
tions, and they should thus be viewed as a way of serving the user
community.

The “discount usability engineering” [Nielsen 1989b, 1990b, 1994c]
method is based on the use of the following four techniques:

e User and task observation
e Scenarios
¢ Simplified thinking aloud

e Heuristic evaluation

17

Usability Engineering

First, the basic principle of early focus on users should of course be
followed. It can be achieved in various ways, including simple
visits to customer locations. The main rules for “discount task anal-
ysis” are simply to observe users, keep quiet, and let the users
work as they normally would without interference.

Scenarios

Scenarios are an especially cheap kind of prototype. The entire idea
behind prototyping is to cut down on the complexity of implemen-
tation by eliminating parts of the full system. Horizontal proto-
types reduce the level of functionality and result in a user interface
surface layer, while vertical prototypes reduce the number of
features and implement the full functionality of those chosen (i.e.,
we get a part of the system to play with).

Scenarios are the ultimate reduction of both the level of function-
ality and of the number of features: They can only simulate the
user interface as long as a test user follows a previously planned
path. See Figure 9 (page 94).

Since the scenario is small, we can afford to change it frequently,
and if we use cheap, small thinking-aloud studies, we can also
afford to test each of the versions. Therefore, scenarios are a way of
getting quick and frequent feedback from users.

Scenarios can be implemented as paper mock-ups [Nielsen 1990d]
or in simple prototyping environments [Nielsen 1989a], which may
be easier to learn than more advanced programming environments
[Nielsen et al. 1991]. This is an additional savings compared to
more complex prototypes requiring the use of advanced software
tools.

Simplified Thinking Aloud

The thinking-aloud method is discussed further in Section 6.8.
Basically, it involves having one test user at a time use the system
for a given set of tasks while being asked to “think out loud.” By
verbalizing their thoughts, users allow an observer to determine
not just what they are doing with the interface, but also why they

18

Executive Summary

are doing it. This additional insight into a user’s thought process
can help pinpoint concrete interface elements that cause misunder-
standings, so that they can be redesigned.

Traditionally, thinking-aloud studies are conducted with psycholo-
gists or user interface experts as experimenters who videotape the
subjects and perform detailed protocol analysis. This kind of
method is certainly intimidating for ordinary developers. Those
developers who have used the thinking-aloud method seem
[Jorgensen 1989] to be happy with it, however. My studies [Nielsen
1992a] show that computer scientists are indeed able to apply the
thinking-aloud method effectively to evaluate user interfaces with
a minimum of training and that even methodologically primitive
experiments will succeed in finding many usability problems.

Another major difference between simplified and traditional
thinking aloud is that data analysis can be done on the basis of the
notes taken by the experimenter instead of by videotapes.
Recording, watching, and analyzing the videotapes is expensive
and takes a lot of time that is better spent on running more subjects
and on testing more iterations of redesigned user interfaces. Video-
taping should only be done in those cases (such as research studies)
where absolute certainty is needed. In discount usability engi-
neering we don’t aim at perfection; we just want to find most of the
usability problems. A survey of 11 software engineers [Perlman
1988] found that they rated simple tests of prototypes as almost
twice as useful as video protocols.

Heuristic Evaluation

Current collections of usability guidelines typically have on the
order of a thousand rules to follow and are therefore seen as intim-
idating by developers. For the discount method I advocate cutting
the complexity by two orders of magnitude, to just 10 rules, relying
on a small set of broader heuristics such as the basic usability prin-
ciples listed in Table 2 and discussed in Chapter 5, Usability
Heuristics.

These principles can be used to explain a very large proportion of
the problems one observes in user interface designs. Unfortunately,

19

Usability Engineering

» Simple and natural dialogue: Dialogues should not contain information that is
irrelevant or rarely needed. Every extra unit of information in a dialogue com-
petes with the relevant units of information and diminishes their relative visibil-
ity. All information should appear in a natural and logical order.

» Speak the users’ language: The dialogue should be expressed clearly in
words, phrases, and concepts familiar to the user, rather than in system-ori-
ented terms.

* Minimize the users’ memory load: The user should not have to remember
information from one part of the dialogue to another. Instructions for use of the
system should be visible or easily retrievable whenever appropriate.

» Consistency: Users should not have to wonder whether different words, situ-
ations, or actions mean the same thing.

» Feedback: The system should always keep users informed about what is
going on, through appropriate feedback within reasonable time.

e Clearly marked exits: Users often choose system functions by mistake and
will need a clearly marked “emergency exit” to leave the unwanted state with-
out having to go through an extended dialogue.

» Shortcuts: Accelerators—unseen by the novice user—may often speed up
the interaction for the expert user such that the system can cater to both inex-
perienced and experienced users.

* Good error messages: They should be expressed in plain language (no
codes), precisely indicate the problem, and constructively suggest a solution.
 Prevent errors: Even better than good error messages is a careful design that
prevents a problem from occurring in the first place.

» Help and documentation: Even though it is better if the system can be used
without documentation, it may be necessary to provide help and documenta-
tion. Any such information should be easy to search, be focused on the user’s
task, list concrete steps to be carried out, and not be too large.

Table 2 These usability principles should be followed by all user interface
designers. This specific list was developed by the author and Rolf Molich
[Molich and Nielsen 1990], but it is similar to other usability guidelines.
See [Nielsen 1994d] for several lists of similar heuristics.

it does require some experience with the principles to apply them
correctly in all cases. On the other hand, even nonexperts can find
many usability problems by heuristic evaluation, and many of the
remaining problems would be revealed by the simplified thinking-
aloud test. It can also be recommended to let several different
people perform a heuristic evaluation as different people locate
different usability problems.

20

Executive Summary

1.5 Recipe For Action

As discussed on page 8, the demand for usability is growing
rapidly these years. This book presents many steps that can be
taken to increase usability. The most important advice to remember
is that usability does not appear just because you wish for it. Get
started on a systematic approach to usability—the sooner, the
better. From a management perspective, the action items are

1. Recognize the need for usability in your organization.

2. Make it clear that usability has management support (this
includes promoting a culture where it is seen as positive for
developers to change their initial design ideas to accommodate
demonstrated user needs).

3. Devote specific resources to usability engineering (you can start
out small, but you need a minimal amount of dedicated
resources for usability to make sure that it does not fall victim
to deadline pressures).

4. Integrate systematic usability engineering activities into the
various stages of your development lifecycle (see Chapter 4),
including the early ones.

5. Make sure that all user interfaces are subjected to user testing.

If you think this 5-step plan is too much, then try this 1-step plan

for a start:

1. Pick one of your existing user interfaces. Subject it to a simple

user test by defining some typical test tasks, getting hold of a
few potential customers who have not used the system before,
and observing them as they try performing the tasks with the
system (without any help or interference from you). If no
usability problems are found, then be happy that you have been
lucky. In the more likely case that problems are found, you
already have your first usability project defined: get rid of them
in the next release by using iterative design.

21

Chapter 2 What Is Usclblllty7

Back when computer vendors first started viewing users as more
than an inconvenience, the term of choice was “user friendly”
systems. This term is not really appropriate, however, for several
reasons. First, it is unnecessarily anthropomorphic—users don’t
need machines to be friendly to them, they just need machines that
will not stand in their way when they try to get their work done.
And second, it implies that users’ needs can be described along a
single dimension by systems that are more or less friendly. In
reality, different users have different needs, and a system that is
“friendly” to one may feel very tedious to another.

Because of these problems with the term “user friendly,” user inter-
face professionals have tended to use other terms in recent years.
The field itself is known under names like CHI (computer-human
interaction), HCI (human—computer interaction, which is preferred
by some who like “putting the human first” even if only done
symbolically), UCD (user-centered design), MMI (man-machine
interface), HMI (human-machine interface)) OMI (operator-
machine interface), UID (user interface design), HF (human
factors), ergonomic:s,1 etc.

I tend to use the term “usability” to denote the considerations that
can be addressed by the methods covered in this book. As shown in

23

Usability Engineering

the following section, there are also broader issues to consider
within the overall framework of traditional “user friendliness.”

2.1 Usability and Other
Considerations

To some extent, usability is a narrow concern compared to the
larger issue of system acceptability, which basically is the question
of whether the system is good enough to satisfy all the needs and
requirements of the users and other potential stakeholders, such as
the users’ clients and managers. The overall acceptability of a
computer system is again a combination of its social acceptability
and its practical acceptability. As an example of social acceptability,
consider a system to investigate whether people applying for
unemployment benefits are currently gainfully employed and thus
have submitted fraudulent applications. The system might do this
by asking applicants a number of questions and searching their
answers for inconsistencies or profiles that are often indicative of
cheaters. Some people may consider such a fraud-preventing
system highly socially desirable, but others may find it offensive to
subject applicants to this kind of quizzing and socially undesirable
to delay benefits for people fitting certain profiles. Notice that
people in the latter category may not find the system acceptable
even if it got high scores on practical acceptability in terms of iden-
tifying many cheaters and were easy to use for the applicants.

Given that a system is socially acceptable, we can further analyze
its practical acceptability within various categories, including
traditional categories such as cost, support, reliability, compati-
bility with existing systems, etc., as well as the category of useful-
ness. Usefulness is the issue of whether the system can be used to
achieve some desired goal. It can again be broken down into the

1. Human factors and ergonomics have a broader scope than just human—
computer interaction. In fact, many usability methods apply equally well to
the design of other complex systems, and even to simple ones that are not
simple enough.

24

What Is Usability?

Social
acceptability

Utility

Easy to learn

Efficient to use

System acceptability

:;gtgt::_l Easy to remember
bility Few errors
Subjectively
pleasing

Etc.

Figure 1 A model of the attributes of system acceptability.

two categories of utility and usability [Grudin 1992], where utility
is the question of whether the functionality of the system in prin-
ciple can do what is needed, and usability is the question of how
well users can use that functionality. Note that the concept of
“utility” does not necessarily have to be restricted to the domain of
hard work. Educational software (“courseware”) has high utility if
students learn from using it, and an entertainment product has
high utility if it is fun to use. Figure 1 shows the simple model of
system acceptability outlined here. It is clear from the figure that
system acceptability has many components and that usability must
trade off against many other considerations in a development
project.

Usability applies to all aspects of a system with which a human
might interact, including installation and maintenance procedures.
It is very rare to find a computer feature that truly has no user
interface components. Even a facility to transfer data between two
computers will normally include an interface to trouble-shoot the
link when something goes wrong [Mulligan et al. 1991]. As another
example, I recently established two electronic mail addresses for a
committee I was managing. The two addresses were ic93-
papers-administrator and ic93-papers-committee (for

25

Usability Engineering

mail to my assistant and to the entire membership, respectively). It
turned out that several people sent email to the wrong address, not
realizing where their mail would go. My mistake was twofold: first
in not realizing that even a pair of email addresses constituted a
user interface of sorts, and second in breaking the well-known
usability principle of avoiding easily confused names. A user who
was taking a quick look at the “To:” field of an email message
might be excused for thinking that the message was going to one
address even though it was in fact going to the other.

2.2 Definition of Usability

It is important to realize that usability is not a single, one-dimen-
sional property of a user interface. Usability has multiple compo-
nents and is traditionally associated with these five usability
attributes:

* Learnability: The system should be easy to learn so that the user
can rapidly start getting some work done with the system.

* Efficiency: The system should be efficient to use, so that once the
user has learned the system, a high level of productivity is
possible.

* Memorability: The system should be easy to remember, so that the
casual user is able to return to the system after some period of
not having used it, without having to learn everything all over
again.

e Errors: The system should have a low error rate, so that users
make few errors during the use of the system, and so that if they
do make errors they can easily recover from them. Further, cata-
strophic errors must not occur.

e Satisfaction: The system should be pleasant to use, so that users
are subjectively satisfied when using it; they like it.

Each of these usability attributes will be discussed further in the
following sections. Only by defining the abstract concept of
“usability” in terms of these more precise and measurable compo-
nents can we arrive at an engineering discipline where usability is
not just argued about but is systematically approached, improved,

26

What Is Usability?

and evaluated (possibly measured). Even if you do not intend to
run formal measurement studies of the usability attributes of your
system, it is an illuminating exercise to consider how its usability
could be made measurable. Clarifying the measurable aspects of
usability is much better than aiming at a warm, fuzzy feeling of
“user friendliness” [Shackel 1991].

Usability is typically measured by having a number of test users
(selected to be as representative as possible of the intended users)
use the system to perform a prespecified set of tasks, though it can
also be measured by having real users in the field perform what-
ever tasks they are doing anyway. In either case, an important
point is that usability is measured relative to certain users and
certain tasks. It could well be the case that the same system would
be measured as having different usability characteristics if used by
different users for different tasks. For example, a user wishing to
write a letter may prefer a different word processor than a user
wishing to maintain several hundred thousands of pages of tech-
nical documentation. As further discussed in Section 6.5 (page 185),
usability measurement therefore starts with the definition of a
representative set of test tasks, relative to which the different
usability attributes can be measured.

To determine a system’s overall usability on the basis of a set of
usability measures, one normally takes the mean value of each of
the attributes that have been measured and checks whether these
means are better than some previously specified minimum (see the
section on Goal Setting on page 80). Since users are known to be
very different, it is probably better to consider the entire distribu-
tion of usability measures and not just the mean value. For
example, a criterion for subjective satisfaction might be that the
mean value should be at least 4 on a 1-5 scale; that at least 50% of
the users should have given the system the top rating, 5; and that
no more than 5% of the users gave the system the bottom rating, 1.

Learnability

Learnability is in some sense the most fundamental usability
attribute, since most systems need to be easy to learn, and since the
first experience most people have with a new system is that of

27

Usability Engineering

oy | Focus on
[§)
S expert user
S
]
e
s
©
>
[=
R}
S
kS
Q
(0]
S
&
o B

Time
Figure 2 Learning curves for a hypothetical system that focuses on the
novice user, being easy to learn but less efficient to use, as well as one that

is hard to learn but highly efficient for expert users. See also Section 2.4
(page 40) for a discussion of how to ride the best parts of both curves.

learning to use it. Certainly, there are some systems for which one
can afford to train users extensively to overcome a hard-to-learn
interface, but in most cases, systems need to be easy to learn.

Ease of learning refers to the novice user’s experience on the initial
part of the learning curve, as shown in Figure 2. Highly learnable
systems have a steep incline for the first part of the learning curve
and allow users to reach a reasonable level of usage proficiency
within a short time. Practically all user interfaces have learning
curves that start out with the user being able to do nothing (have
zero efficiency) at time zero (when they first start using it). Excep-
tions include the so-called walk-up-and-use systems such as
museum information systems that are only intended to be used
once and therefore need to have essentially zero learning time,
allowing users to be successful from their very first attempt at
using them.

The standard learning curve also does not apply to cases where the
users are transferring skills from previous systems, such as when
they upgrade from a previous release of a word processor to the

28

What Is Usability?

new release [Telles 1990]. Assuming that the new system is reason-
ably consistent with the old, users should be able to start a fair bit
up on the learning curve for the new system [Polson et al. 1986].

Initial ease of learning is probably the easiest of the usability
attributes to measure, with the possible exception of subjective
satisfaction. One simply picks some users who have not used the
system before and measures the time it takes them to reach a speci-
fied level of proficiency in using it. Of course, the test users should
be representative of the intended users of the system, and there
might be a need to collect separate measurements from complete
novices without any prior computer experience and from users
with some typical computer experience. In earlier years, learn-
ability studies focused exclusively on users without any computer
experience, but since many people now have used computers, it is
becoming more and more important to include such users in
studies of system learnability.

The most common way to express the specified level of proficiency
is simply to state that the users have to be able to complete a certain
task successfully. Alternatively, one can specify that users need to
be able to complete a set of tasks in a certain, minimum time before
one will consider them as having “learned” the system. Of course,
as shown in Figure 2, the learning curve actually represents a
continuous series of improved user performance and not a dichoto-
mous “learned”/“not learned” distinction. It is still common,
however, to define a certain level of performance as indicating that
the user has passed the learning stage and is able to use the system,
and to measure the time it takes the user to reach that stage.

When analyzing learnability, one should keep in mind that users
normally do not take the time to learn a complete interface fully
before starting to use it. On the contrary, users often start using a
system as soon as they have learned a part of the interface. For
example, a survey of business professionals who were experienced
personal computer users [Nielsen 1989e] found that 4 of the 6
highest-rated usability characteristics (out of 21 characteristics in
the survey) related to exploratory learning: easy-to-understand
error messages, possible to do useful work with program before

29

Usability Engineering

having learned all of it, availability of undo, and confirming ques-
tions before execution of risky commands. Because of users’
tendency to jump right in and start using a system, one should not
just measure how long it takes users to achieve complete mastery
of a system but also how long it takes to achieve a sufficient level of
proficiency to do useful work.

Efficiency of Use

Efficiency refers to the expert user’s steady-state level of perfor-
mance at the time when the learning curve flattens out (again, see
Figure 2). Of course, users may not necessarily reach that final level
of performance any time soon. For example, some operating
systems are so complex that it takes several years to reach expert-
level performance and the ability to use certain composition opera-
tors to combine commands [Doane et al. 1990, 1992]. Also, some
users will probably continue to learn indefinitely, though most
users seem to plateau once they have learned “enough” [Rosson
1984, Carroll and Rosson 1987]. Unfortunately, this steady-state
level of performance may not be optimal for the users who, by
learning a few additional advanced features, sometimes would
save more time over the course of their use of the system than the
time it took to learn them.

To measure efficiency of use for experienced users, one obviously
needs access to experienced users. For systems that have been in
use for some time, “experience” is often defined somewhat infor-
mally, and users are considered experienced either if they say so
themselves or if they have been users for more than a certain
amount of time, such as a year. Experience can also be defined
more formally in terms of number of hours spent using the system,
and that definition is often used in experiments with new systems
without an established user base: Test users are brought in and
asked to use the system for a certain number of hours, after which
their efficiency is measured. Finally, it is possible to define test
users as experienced in terms of the learning curve itself: A user’s
performance is continuously measured (for example, in terms of
number of seconds to do a specific task), and when the perfor-
mance has not increased for some time, the user is assumed to have

30

What Is Usability?

reached the steady-state level of performance for that user [Nielsen
and Phillips 1993].

A typical way to measure efficiency of use is thus to decide on
some definition of expertise, to get a representative sample of users
with that expertise, and to measure the time it takes these users to
perform some typical test tasks.

Memorability

Casual users are the third major category of users besides novice
and expert users. Casual users are people who are using a system
intermittently rather than having the fairly frequent use assumed
for expert users. However, in contrast to novice users, casual users
have used a system before, so they do not need to learn it from
scratch, they just need to remember how to use it based on their
previous learning. Casual use is typically seen for utility programs
that are only used under exceptional circumstances, for supple-
mentary applications that do not form part of a user’s primary
work but are useful every now and then, as well as for programs
that are inherently only used at long intervals, such as a program
for making a quarterly report.

Having an interface that is easy to remember is also important for
users who return after having been on vacation or who for some
other reason have temporarily stopped using a program. To a great
extent, improvements in learnability often also make an interface
easy to remember, but in principle, the usability of returning to a
system is different from that of facing it for the first time. For
example, consider the sign “Kiss and Ride” seen outside some
Washington, DC, Metro stations. Initially, the meaning of this sign
may not be obvious (it has poor learnability without outside assis-
tance), but once you realize that it indicates a drop-off zone for
commuters arriving in a car driven by somebody else, the sign
becomes sufficiently memorable to allow you to find such zones at
other stations (it is easy to remember).?

2. “Kiss and Ride” is an analogy with “Park and Ride” areas where people can
leave their cars. The sign refers to commuters who are driven by their spouses
and will kiss them before getting out of the car to take the train.

31

——

Usability Engineering

Interface memorability is rarely tested as thoroughly as the other
usability attributes, but there are in principle two main ways of
measuring it. One is to perform a standard user test with casual
users who have been away from the system for a specified amount
of time, and measure the time they need to perform some typical
test tasks. Alternatively, it is possible to conduct a memory test
with users after they finish a test session with the system and ask
them to explain the effect of various commands or to name the
command (or draw the icon) that does a certain thing. The inter-
face’s score for memorability is then the number of correct answers
given by the users.

The performance test with casual users is most representative of
the reason we want to measure memorability in the first way. The
memory test may be easier to carry out but does have the problem
that many modern user interfaces are built on the principle of
making as much as possible visible to the users. Users of such
systems do not need to be actively able to remember what is avail-
able, since the system will remind them when necessary. In fact, a
study of one such graphical interface showed that users were
unable to remember the contents of the menus when they were
away from the system, even though they could use the same
menus with no problems when they were sitting at the computer
[Mayes et al. 1988].

Few and Noncatastrophic Errors

Users should make as few errors as possible when using a
computer system. Typically, an error is defined as any action that
does not accomplish the desired goal, and the system’s error rate is
measured by counting the number of such actions made by users
while performing some specified task. Error rates can thus be
measured as part of an experiment to measure other usability
attributes.

Simply defining errors as being any incorrect user action does not
take the highly varying impact of different errors into account.
Some errors are corrected immediately by the user and have no
other effect than to slow down the user’s transaction rate some-
what. Such errors need not really be counted separately, as their

32

What Is Usability?

effect is included in the efficiency of use if it is measured the
normal way in terms of the user’s transaction time.

Other errors are more catastrophic in nature, either because they
are not discovered by the user, leading to a faulty work product, or
because they destroy the user’s work, making them difficult to
recover from. Such catastrophic errors should be counted sepa-
rately from minor errors, and special efforts should be made to
minimize their frequency.

Subjective Satisfaction

The final usability attribute, subjective satisfaction, refers to how
pleasant it is to use the system. Subjective satisfaction can be an
especially important usability attribute for systems that are used
on a discretionary basis in a nonwork environment, such as home
computing, games, interactive fiction, or creative painting [Virzi
1991]. For some such systems, their entertainment value is more
important then the speed with which things get done, since one
might want to spend a long time having fun [Carroll and Thomas
1988]. Users should have an entertaining and/or moving and/or
enriching experience when using such systems since they have no
other goal.

Note that the notion of subjective satisfaction as an attribute of
usability is different from the issue of the public’s general attitudes
toward computers. Even though it is likely that a person’s feelings
toward computers as a general phenomenon will impact the extent
to which that person likes interacting with a particular system,
peoples’ attitudes toward computers in general should probably be
seen as a component of the social acceptability of computers rather
than their usability. See [LaLomia and Sidowski 1991] for a survey
of such computer attitude studies. Computer enthusiasts may hope
that steady improvements in computer usability will result in more
positive attitudes toward computers. Little is currently known
about the relation between attributes of individual computer
systems and users’ general attitudes, though users who perceive
that they have a high degree of control over the computer have
been found also to have positive attitudes toward computers [Kay
1989].

33

Usability Engineering

In principle, certain objective measures might be used instead of
asking the users’ subjective preference to assess the pleasing nature
of an interface. In a few cases, psychophysiological measures such
as EEGs, pupil dilation, heart rate, skin conductivity, blood pres-
sure, and level of adrenaline in the blood have been used to esti-
mate the users’ stress and comfort levels [Mullins and Treu 1991;
Schleifer 1990; Wastell 1990]. Unfortunately, such measures require
intimidating experimental conditions such as wiring the user to an
EEG machine or taking blood samples. Since test users are
normally nervous enough as it is and since a relaxed atmosphere is
an important condition for much user testing (see page 181), the
psychophysiological approach will often be inappropriate for
usability engineering studies.

Alternatively, subjective satisfaction may be measured by simply
asking the users for their subjective opinion. From the perspective
of any single user, the replies to such a question are subjective, but
when replies from multiple users are averaged together, the result
is an objective measure of the system’s pleasantness. Since the
entire purpose of having a subjective satisfaction usability attribute
is to assess whether users like the system, it seems highly appro-
priate to measure it by asking the users, and this is indeed what is
done in the overwhelming number of usability studies.

To ensure consistent measurements, subjective satisfaction is
normally measured by a short questionnaire that is given to users
as part of the debriefing session after a user test. Of course, ques-
tionnaires can also be given to users of installed systems in the field
without the need to have them go through a special test procedure
first. For new systems, however, it is important not to ask the users
for their subjective opinions until after they have had a chance to
try using the system for a real task. The answers users give to ques-
tions before and after having used a system are unfortunately not
very highly correlated [Root and Draper 1983].

Users have been known to refuse to use a program because the
manual was too big [Nielsen et al. 1986], without even trying to
read it to see whether it was in fact as difficult as they thought.
Therefore it is certainly reasonable to study the approachability of a

34

What Is Usability?

Please indicate the degree to which you agree or disagree with the following
statements about the system:

“It was very easy to learn how to use this system.”

“Using this system was a very frustrating experience.”

“I feel that this system allows me to achieve very high productivity.”

“I worry that many of the things | did with this system may have been wrong.”
“This system can do all the things | think | would need.”

“This system is very pleasant to work with.”

Table 3 Questions users might be asked to measure subjective satisfac-
tion using a Likert scale. Users would typically indicate their degree of
agreement on a 1-5 scale for each statement. One would normally refer to
the system by its name rather than as “this system.”

system (this is especially important from a marketing perspective)
[Angiolillo and Roberts 1991]. To do so, one can show the system to
users and ask them, “How difficult do you think it would be to
learn to use this?”—just don’t expect the answers to have much
relation to the actual learnability of the system.

Even when users do have experience using a system, their subjec-
tive ratings of its difficulty are much more closely related to the
peak difficulty they experienced than to mean difficulty; the most
difficult episode a user experienced is the most memorable for that
user. In one experiment, the peak experienced difficulty while
performing a task accounted for 31% of the users’ subjective rating
of the system’s difficulty whereas the task time only accounted for
7% [Cordes 1993]. One conclusion is that one cannot rely solely on
user ratings if the goal is to improve overall system performance.
On the other hand, sales considerations imply a need to have users
believe that the system is easy to generate positive word-of-mouth,
and such impressions might be improved more by a bland inter-
face with no extreme peak in difficulty than by a system that is
mostly excellent but has one really hard part for users to overcome.

Subjective satisfaction questionnaires are typically very short,
though some longer versions have been developed for more
detailed studies [Chin et al. 1988]. Typically, users are asked to rate
the system on 1-5 or 1-7 rating scales that are normally either
Likert scales or semantic differential scales [LaLomia and Sidowski
1990]. For a Likert scale, the questionnaire postulates some state-

35

Usability Engineering

Please mark the positions that best reflect your impressions of this system:

Pleasing _ ___ _ _ _ Irritating
Complete _ _ _ _ _ _ _ Incomplete
Cooperative _ _ _ _ _ _ _ Uncooperative
Simple: & a0 e oy Complicated
FPasttoifse 1 & s 20 Slow to use
Safe Unsafe

Table 4 Some semantic differential scales to measure subjective satisfac-
tion with computers. See [Coleman et al. 1985] for a list of 17 such scales.

ment (e.g., “I found this system very pleasant to use”) and asks the
users to rate their degree of agreement with the statement. When
using a 1-5 rating scale, the reply options are typically 1 = strongly
disagree, 2 = partly disagree, 3 = neither agree nor disagree, 4 =
partly agree, and 5 = strongly agree.

A semantic differential scale lists two opposite terms along some
dimension (for example, very easy to learn vs. very hard to learn)
and asks the user to place the system on the most appropriate
rating along the dimension. Table 3 and Table 4 list some sample
questions that are often asked to measure subjective satisfaction.
One could add a few questions addressing issues of special
interest, such as “the quick reference card was very helpful,” but it
is normally best to keep the questionnaire short to maximize the
response rate. A final rating for subjective satisfaction is often
calculated simply as the mean of the ratings for the individual
answers (after compensating for any use of reverse polarity), but it
is also possible to use more sophisticated methods, drawing upon
rating scale theory from sociology and psychometrics.

No matter what rating scales are used, they should be subjected to
pilot testing (see page 174) to make sure that the questions are
interpreted properly by the users. For example, a satisfaction ques-
tionnaire for a point-of-sales system used a dimension labelled
“human contact vs. cold technology” to assess whether users felt
that it was impersonal to be served by a machine. However, since
no humans were present besides the user, many users felt that it
was logically impossible to talk about “human contact,” and did
not answer the question in the intended manner.

36

What Is Usability?

When rating scales are used, one needs an anchor or baseline to
calibrate the scale before it is possible to assess the results. If subjec-
tive satisfaction ratings are available for several different systems
or several different versions of the same system, it is possible to
consider the ratings in relation to the others and thus to determine
which system is the most pleasant to use. If only a single user inter-
face has been measured, one should take care in interpreting the
ratings, since people are often too polite in their replies. Users
normally know that the people who are asking for the ratings have
a vested interest in the system being measured, and they will tend
to be positive unless they have had a really unpleasant experience.
This phenomenon can be partly counteracted by using reverse
polarity on some of the questions, that is, having some questions to
which an agreement would be a negative rating of the system.

Nielsen and Levy [1994] found that the median rating of subjective
satisfaction for 127 user interfaces for which such ratings had been
published was 3.6 on a 1-5 scale with 1 being the worst rating and
5 the best. Ostensibly, the rating 3 is the “neutral” point on a 1-5
rating scale, but since the median is the value where half of the
systems were better and half were poorer, the value 3.6 seems to be
a better estimate of “neutral” or “average” subjective satisfaction.

If multiple systems are tested, subjective satisfaction can be
measured by asking users which system they would prefer or how
strongly they prefer various systems over others. Finally, for
systems that are in use, one can measure the extent that users
choose to use them over any available alternatives. Data showing
voluntary usage is really the ultimate subjective satisfaction rating.

2.3 Example: Measuring the Usability
of Icons

To clarify the slightly abstract definition of usability in the previous
section, this section gives several examples of how to measure the
usability of a concrete user interface element: icons. Icons have

37

Usability Engineering

become very popular elements in graphical user interfaces, but not
all icons have equally good usability characteristics.

A systematic approach to icon usability would define measurable
criteria for each of the usability attributes of interest to the system
being developed. It is impossible to talk about the usability of an
icon without knowing the context in which it will be shown and
the circumstances under which it will be used. This section
presents a few of the approaches to icon usability that have been
published in the user interface literature. For some other examples,
see [Green and Barnard 1990; Hakiel and Easterby 1987, Magyar
1990; Nolan 1989; Salasoo 1990; Stammers and Hoffman 1991;
Zwaga 1989].

A classic study of icon usability was described by Bewley et al.
[1983]. Four different sets of icons were designed for a graphical
user interface with 17 icons. All of the icons were tested for ease of
learning, efficiency of use, and subjective satisfaction. Ease of
learning was assessed by several means: First, the intuitiveness® of
the individual icons was tested by showing them to the users, one
at a time, asking the user to describe “what you think it is.” Second,
since icons are normally not seen in isolation, the understandability
of sets of icons was tested by showing the users entire sets of icons
(one out of the four sets that had been designed). Users were then
given the name of an icon and a short description of what it was
supposed to do, and asked to point to the icon that best matched
the description. Users were also given the complete set of names
and asked to match up all the icons with their name. The score for
all these learning tests was the proportion of the icons that were
correctly described or named.

Two efficiency tests were conducted. In the first test, users who had
already learned the meaning of the icons through participation in
the learning tests were given the name of an icon and told that it
might appear on the computer display. A random icon then

3. An early activity aimed at getting intuitive icons is to ask some users to
draw icons they would like for each of the concepts that need to be depicted.
The results will probably not look very good, but they can serve as a pool of
ideas for the graphic designer.

38

What Is Usability?

appeared, and the users pressed a “yes” button if it was one they
were looking for and a “no” button if it was some other icon. In the
second test, users were shown a randomized display of icons and
asked to click on a specific icon. Both these tests were timed, and
the score for an icon was the users’ reaction time in seconds.

Subjective satisfaction was measured in two ways. First, users were
asked to rate each icon one at a time for how easy it was to pick
out. Second, for each of the 17 concepts, the users were shown the
four possible icons and asked to choose the one they preferred. The
subjective score for an icon was the user rating for the first test and
the proportion of users who preferred it for the second test.

Given the results from all these tests, it was possible to compare the
four icon sets. One set that included the names of the commands as
part of the icon got consistently high scores on the test where users
had to describe what the icon represented. This result may not be
all that surprising and has indeed been confirmed by later research
on other interfaces [Egido and Patterson 1988; Kacmar and Carey
1991]. Unfortunately, this set of icons was not very graphically
distinct, and many of the icons were hard to find on a screen with
many similar icons. For the final system, a fifth set of icons was
designed, mostly being based on one of the four original sets, but
with some variations based on lessons from the tests as well as the
aesthetic sensibilities of the graphic designers.

Icons are probably easier to design for objects than for operations
since many objects can be depicted representationally. Rogers
[1986] studied the usability of icon sets for operations by testing
gradually more complex icons with more and more elements. The
only usability parameter measured was comprehensibility, which
was assessed by a matching test. For each level of icon complexity
(for example, icons with few elements), an entire set of icons was
designed to represent the commands in the system. For each such
set, 10 users were shown all the icons as they went through a list of
textual descriptions of the command functions. For each textual
description, the users picked the one icon they believed matched it
best, and the total comprehension score for an icon set was then
calculated as the number of correct matches.

39

Usability Engineering

The best icons showed both the concrete object being operated
upon (for example a sheet of paper) and an abstract representation
of the operation (for example an arrow). Icons with only one of
these elements were harder to understand as were icons with even
more information (such as replacing the arrow with a pointing
finger with little cartoon-like lines denoting movement). So a
medium level of complexity was best for comprehension. Also,
icons for commands with a visual outcome (such as the movement
of text in a word processor) were much easier to comprehend than
were icons for commands with a nonvisual outcome (such as “save
a file”).

Icons that are intended for critical or widely used applications may
need to satisfy more stringent quality criteria than other icons.
International standards is certainly one area where one would
want a high level of usability. Lindgaard et al. [1987] report on a
case where the International Standards Organization (ISO)
required that icons should be correctly interpreted by at least 66%
of the subjects in a test for the icon to be considered for adoption as
an international standard. Only half of the proposed icons actually
passed this criterion when they were tested with technically
knowledgeable users, and for naive subjects, only 1 out of 12 icons
was good enough. Iterative design resulted in improved icons, but
the important lesson from this study is the benefit of deciding on a
reasonable criterion for measurable usability and then testing to
see whether the goal has been met before releasing a product.

The examples in this section have shown that icon usability can be
defined and measured in many different ways. The main conclu-
sion from the examples is the need to refine the basic usability
criteria listed in Section 2.2 with respect to the circumstances of
each concrete project. There are many different ways of measuring
usability, and no single measure will be optimal for all projects.

4. Users were shown the command descriptions one at a time, thus preventing
them from matching icons to descriptions by exclusion. If the users had been
able to see all the command descriptions at the same time as they were seeing
all the icons, they could have assigned the last (and probably most difficult)
icon to the remaining, unmatched command description.

40

What Is Usability?

2.4 Usability Trade-Offs

The learning curves in Figure 2 (page 28) may give the impression
that one can have either a system that is easy to learn or one that is
eventually efficient, though initially hard to learn. In fact, often a
system that will give good novice learning will also be good for the
experts. Also, it is often possible to ride the best parts of both
learning curves by providing a user interface with multiple interac-
tion styles, such that the user starts by learning one interaction
style that is easy to learn and later changes to another that is more
efficient for frequently used operations.

The typical way to achieve this “best-of-both-worlds” effect is to
include accelerators in the user interface. Accelerators are user inter-
face elements that allow the user to perform frequent tasks quickly,
even though the same tasks can also be performed in a more
general, and possibly slower, way. Typical examples of accelerators
include function keys, command name abbreviations, and the use
of double-clicking to activate an object. Section 5.7 (page 139)
provides more examples of dialogue shortcuts that can serve as
accelerators for the expert user.

Users of such a dual interface who are on the part of the learning
curve where they are changing to expert mode may suffer a small
dip in performance, so the learning curve will not necessarily be
continuously increasing. Also, one should keep in mind that the
increased interface complexity inherent in having both novice and
expert modes can be a problem in itself. It is therefore important to
design the interface in such a way that the novice users can use it
without being confronted with the expert mode and the accelera-
tors. For example, a command language system that allows abbre-
viations should always spell out the full name of the commands in
any help and error messages. Also, any operation that is activated
by double-clicking should also be made available as a menu choice
or in some other visible fashion.

The trade-off between learnability for novice users and efficiency
of use for expert users can sometimes be resolved to the benefit of
both user groups without employing dual interaction styles. For

41

Usability Engineering

example, unless the application involves a very large number of
fields, one might as well use descriptive field labels in a dialog box,
even though they would make it a little larger than if cryptic abbre-
viations were used. The expert users would not be hurt by such a
concession to the novices.” Similarly, both user groups would
benefit from appropriate choice of default values—experts because
they would need to change the value less often, and novices
because the system would conform to their typical needs without
the need for them to learn about the nondefault options.

Even so, it is not always possible to achieve optimal scores for all
usability attributes simultaneously. Trade-offs are inherent in any
design process and apply no less to user interface design. For
example, the desire to avoid catastrophic errors may lead to the
decision to design a user interface that is less efficient to use than
otherwise possible: typically because extra questions are asked to
assure that the user is certain about wanting a particular action.

In cases where a usability trade-off seems necessary, attempts
should first be made at finding a win-win solution that can satisfy
both requirements. If that is not possible, the dilemma should be
resolved under the directions set out by the project’s usability goals
(see page 79), which should define which usability attributes are
the most important given the specific circumstances of the project.

Furthermore, considerations other than usability may lead to
designs violating some usability principles. For example, security
considerations often require access controls that are decidedly non-
user friendly, such as not providing constructive error messages in
case of an erroneously entered password. As another example,
museum information systems and other publicly used systems
may have hidden options, such as a command to reboot the system

5. Actually, Fitts” Law implies that it would be a little slower to move the
mouse between fields in the larger version of the dialog box, since the time to
point at an object is proportional to the logarithm of the distance to the object
[Card et al. 1978]. However, expert users would be likely to move between the
fields in the dialog box with the Tab key (another accelerator) if speed was of
the essence, and they would therefore not be subject to Fitts” Law.

42

What Is Usability?

in case of trouble, in cases where the options are not intended to be
used by the regular users.

2.5 Categories of Users and
Individual User Differences

The two most important issues for usability are the users’ task and
their individual characteristics and differences. An analysis of 92
published comparisons of usability of hypertext systems found
that 4 of the 10 largest effects (including all of the top 3 effects) in
the studies were due to individual differences between users and
that 2 were due to task differences [Nielsen 1989d]. It is therefore
an important aspect of usability engineering to know the user.
Understanding the major ways of classifying users may also help
[Potosnak et al. 1986], though often the same system design will be
good for many categories of users.

Figure 3 shows the “user cube” of the three main dimensions®

along which users’ experience differs: experience with the system,
with computers in general, and with the task domain.

The users’ experience with the specific user interface under consid-
eration is the dimension that is normally referred to when
discussing user expertise, and users are normally considered to be
either novices or experts, or somewhere in-between. The transition
from novice to expert user of a system often follows a learning
curve somewhat like those shown in Figure 2.

Most of the usability principles discussed in this book will help
make systems easier to learn, and thus allow users to reach expert
status faster. In addition to general learnability, there are several

6. Note that the classification dimensions used here are different from those
used in the “user cube” of Cotterman and Kumar [1989]. Their dimensions
concerned the degree to which the user was the producer or consumer of
information, whether the user had any part in developing the system, and the
user’s degree of decision-making authority over the system. These dimensions
are certainly also of interest.

43

Usability Engineering

Knowledgeable about Domain

o
)
&
2
\)6
&
A
Minimal Computer Experience Extensive Complrter Experience
C
\0& <
oV 5
\0\ S
Sid 3
Q Q0
e [
4\ -
(8) e
< S
o
=
K=y

Figure 3 The three main dimensions on which users’ experience differs:
knowledge about computers in general, expertise in using the specific
system, and understanding of the task domain.

user interface elements that can prod users to acquire expertise. A
classic example is the way many menu systems list the appropriate
shortcut for menu options as part of the menu itself. Such shortcuts
are often function keys or command name abbreviations but, in
any case, they can be mentioned in a way that does not hurt novice
users while still encouraging them to try the alternative interaction
technique. Online help systems may encourage users to broaden
their understanding of a system by providing hypertext links to
information that is related to their specific queries. It may even be
possible for the system to analyze the user’s actions and suggest
alternative and better ways of achieving the same goal.

Some user interfaces are only intended to be used by novices, in
that almost nobody will use them more than a few times. This is

4

What Is Usability?

true for most walk-up-and-use systems, like a kiosk for making
dinner reservations in an amusement park, but also for interfaces
that may require a little reading of the instructions, such as installa-
tion programs, disk formatting routines, and tax return programs
that change every year. Most interfaces, however, are intended for
both novice and expert users and thus need to accommodate both
usage styles.

As discussed in Section 2.4, a common way to cater to both expert
and novice users is to include accelerators in the interface to allow
expert users to use faster, but less obvious, interaction techniques.
Several widely used systems come with two sets of menus, one for
novice users (often called “short menus” to avoid any stigma) and
one for expert users (“long menus”). This allows the system to offer
a wide range of features to the experts without confusing the
novices. Similarly, as discussed in Section 5.10, online help can
assist the novice users without getting in the way of the experts.
Interfaces that are solely intended for novices may not need special
help systems, as they should include all the necessary user assis-
tance in the primary interface itself.

In spite of the common simplistic distinction between expert and
novice users, the reality is that most people do not acquire compre-
hensive expertise in all parts of a system, no matter how much they
use it. Almost all systems of some complexity have so many
features and so many uses that any given user only makes exten-
sive use of a small subset [Draper 1984]. Thus, even an “expert”
user may be quite novice with respect to many parts of the system
not normally used by that user. As a consequence, expert users still
need access to help systems for those parts of the interface that they
do not use as often, and they will benefit from increased learn-
ability of these features.

The users’ general experience with computers also has impact on
user interface design. As a simple example, consider a utility
program distributed to mainframe systems administrators as
compared with one that is to be used by home computer owners.
Even though the two utilities may be intended for somewhat the
same purpose, such as disk defragmentation, the interfaces should

45

Usability Engineering

be very different. Even with more application-oriented interfaces,
users with extensive experience from many other applications will
normally be better off than users who have only used a single
system, since experienced users will have some idea of what
features to look for and how a computer normally deals with
various situations. For example, a user with experience of a spread-
sheet and a database program might try to look for a “sort”
command in a new word processor. Furthermore, a user’s
programming experience will to a large degree determine the
extent to which that user can use macro languages and other
complex means of combining commands, and whether the
resulting structures will be easily maintainable and modifiable
when the user’s needs change at a later date.

The final important dimension is the user’s knowledge of the task
domain addressed by the system. Interfaces for users with exten-
sive domain knowledge can use specialized terminology and a
higher density of information in the screen designs. Users with
little domain knowledge will need to have the system explain what
it is doing and what the different options mean, and the termi-
nology used should not be as abbreviated and dense as for domain
specialists. Consider, for example, the design of a financial plan-
ning system. The interface obviously needs to be very different
depending on whether the intended users are finance professionals
or whether the system is intended to help professionals from other
fields invest and keep track of their money.

Users also differ in other ways than experience. Some differenti-
ating factors are easy to observe, like age [Czaja 1988] and gender
[Fowler and Murray 1987; Teasley et al. 1994]. Other factors are less
immediately obvious, like differences in spatial memory and
reasoning abilities [Gomez et al. 1986] and preferred learning style
[Sein and Bostrom 1989], where some people learn better from
abstract descriptions, and others learn better from concrete exam-
ples. The important lesson from studies of these and other differ-
ences is that one needs to consider the entire spectrum of intended
users and make sure that the interface is usable for as many as
possible, and not just for those who happen to have the same char-
acteristics as the developers themselves. For example, the devel-

46

What Is Usability?

opers may find it easy to remember where everything is located in
a hierarchical file system, but users with lower spatial memory
abilities may find the user interface significantly easier to use if it
included an overview map [Vincente and Williges 1988].

In addition to differences between groups of users, there are also
important differences between individual users [Egan 1988]. The
most extreme example may be in programming, where the differ-
ence in productivity between the best and the worst programmers
typically is a factor of 20 [Curtis 1981]. That is, the program that
one person can write in two weeks will take another a year—and
the two-week program will often be of better quality. A practical
implication of this result that has been found in several studies is
that the most important aspect of improving software projects is to
employ fewer, but better programmers. Even for nonprogramming
tasks, the ratio between the best and the worst users’ performance
is typically a factor of between 4 and 10.

Since the ratio between best and worst users reflects the extremes
and also depends on the number of users tested, one also
commonly uses quartile ratios to express the magnitude of indi-
vidual differences. Quartiles divide a sorted range of observations,
such as a set of user performance data, into four equally large sets.
The Q3/Q; ratio indicates how much better the best 25% (the top,
or fourth quartile)” of the users are compared with the worst 25%
(the bottom, or first quartile). Q3 indicates the level of performance
where 25% of the users are better and 75% are worse. Similarly, Q,
indicates the level of performance where 25% of the users are
worse and 75% are better. For example, assume that 8 users had
been measured as having task throughputs of 2, 3, 3, 4,4, 5, 6, and 9
transactions per minute. Since there are 8 users, the bottom quartile
will cut between the second worst and third worst users, or a level
of 3. Similarly, the top quartile will cut between the second best and

7. The reason Qj is used to represent the performance of top users even
though they are the fourth quartile is that Qs is the level separating the third
and the fourth quartile. It would not be as representative to use Q4 which is
the other endpoint of the interval representing the top quartile, since Qy is the
performance achieved by the single-best user.

47

Usability Engineering

third best, corresponding to a level of 5.5. Thus, the Q3/Q ratio is
5.5/3=1.8. For many computer tasks, the Q3/Q; ratio is about two.

Attitude differences can also impact how people use computers.
For whatever reason, some people simply love using computers
and will go to extreme efforts to learn all about their system. I once
interviewed a business professional who said that she liked to
learn a new software package every month just to stay in shape,
and many other “super-users” spend as much time as many
hackers learning about obscure details in their computers, even
though they are business professionals and not programmers
[Nielsen et al. 1986]. Such super-users (also known as “power
users” or “gurus”) often serve an important function as liaisons
between the regular users and new computer developments as
introduced by an information management department or outside
software vendors. The super-users’ role as technology champions
not only helps introduce new systems, but also provides the
regular users with a local means of finding sympathetic and task-
specific help [Gantt and Nardi 1992; Nardi and Miller 1991]. Since
they often like to talk, super-users can also serve as a way for soft-
ware developers to get feedback about changing user needs before
the majority of users have reached a stage where these new needs
have become apparent. Just remember that most users will be
different from the super-users, so do not design the user interface
purely on the basis of their desires.

Given the many differences between groups of users and between
individual users, it might be tempting to give up and just allow the
users to customize their interfaces to suit their individual prefer-
ences. However, as discussed under the heading Users Are Not
Designers on page 12, it is not a good idea to go too far in that direc-
tion either. Most often, it is possible to design user interfaces to
accommodate several kinds of users as long as attention is paid to
all of the relevant groups during the design process. It is rare that
an interface change that is necessary to help one group will be a
major problem for another, or that it is at least not possible to work
around the second group’s difficulties.

48

chapters Generations of User
Interfaces

User interface design is still too new a field to have attracted much
historical analysis. People have mostly been too busy building
interfaces to worry where they came from, even though a few
historical treatments are starting to emerge [Anonymous 1990;
Card and Moran 1988; Gaines 1984; Gaines and Shaw 1986a and b;
Goldberg 1988; Grudin 1990a; Nielsen 1990a, Chapter 3; Nyce and
Kahn 1991; Perry and Voelcker 1989; Rheingold 1985; Teitelman
1986]. See also [Ramsey and Grimes 1983] for a survey of early
research in the user interface field.

In the computer field, the term “generation” is often used to refer
to the changes in the underlying hardware component technology.
However, user interface technology has also been through a series
of generations that roughly parallels the generations of hardware
[Tesler 1991], and there are also other elements of the history of
computing that have seen considerable change, such as the catego-
ries of people using the computers. Table 5 summarizes the genera-
tions of computers and user interfaces so far. The summary of the
advertising image of computers is based on [Aspray and Beaver
1986]. The dates given for each generation in Table 5 indicate the
time from when early adapters started using that generation to the
time when they started using the next. Certainly, pioneers in
leading research laboratories started using many technologies

49

0s

: Hardware Operating Programming Terminal Advertising User interface
Generation technology mode languages technology User types image paradigm
0 M : None (direct
echanical, ; " i None
-1945 electromecha— m‘;‘ef;?gi g: '?g Moving cables Feh?g'gg dbl'zl::gﬁ The inventors | (computers giggss:’tg the
Pre-history nical (Babbage, for calculatigns around cgrds P themselves had not left the hardware only
Zuse Z3) lab yet) ; :
important thing)
1 Vacuum tubes One user at a TTY,
e |time “owns” Machine lan- o .
1945-1955 huge machines, A typewriter. Only | Experts, Computer as | Programming,
Pioneer short mean time fmoraghl'i';ﬁtgzjm 83??301111 01 used in the com- | pioneers calculator Batch
between failures time only) puter center
2 Transistors; Batch (central-
o more reliable. ized “computer Line-oriented Technocrats, Computer as
1955-1065 Computers start | as temple,” not Assembler terminals professional information Command
Historical ADD A,B languages
seeing use out- |accessed ’ (“glass-TTY") computerists processor
side the lab. directly)
3 Integrated circuits. e High-level lan- | Full-screen ter- | Specialized .
1965-1980 Businesses can zgm?n:q?ar;nsgac- guages, For- minals, alphanu- |groups without |Mechanization z#:lct?cﬁ:?archi-
Traditional cost-justify buying tion processing | ran: Pascal, C | meric characters | computer knowl- | of white-collar pri m)(;nus and
computers for s stSms) 9 it expense > only. Remote edge (e.g., labor form fill-in
many needs. y income then... |access common |bank tellers)
4 VLSI. . Problem-ori- | Graphical dis- : _ | WIMP (Win-
19801995 Individuals can Single-user ented lan- plays. Desktop Business Personal pro dows, Icons,
: personal com- ; professionals, | ductivity (com-
Modern buy their own per- Citehs guages, workstations, hobbyists uter as tool) Menus, and a
sonal computer | P spreadsheets | heavy portables y P Pointing device)
5 Wafer-scale Networked . " “Dynabook,” mul-
1995-7 integration. single-user No:;?glperatwe, timedia I/O, eas- Everybod Computer as | Noncommand-
Future. Individuals can and embedded g?aphicyal ily portable, with FyPody, appliance based interfaces
buy many. systems cellular modem

Table 5 Summary of the generations of computers and user interfaces.

Buusauibuz Aupgesn

Generations of User Interfaces

earlier, and many innovation laggards stayed safely a generation or
so behind the early adapters.

The historical development of user interfaces is interesting because
each generation seems to contain the previous ones as special
cases. Even as communication bandwidth has grown, previous
communication methods remain useful, and the addition of new
user populations does not mean that the previous users disappear.
Many other technological developments involve the replacement
of older technology with newer inventions, but a good designer of
modern user interfaces still needs to know how to best use interac-
tion techniques from several generations ago.

3.1 Batch Systems

The first generation of user interfaces was not even interactive.
Batch systems can be said to involve zero-dimensional interfaces in
that the interaction between the system and the user was restricted
to a single point in time: the submission of the batch job as a single
unit. All the user’s commands had to be specified before the result
of any of them was made known to the user. Obviously, this “inter-
action style” was not highly usable for most purposes.

Batch jobs did have an advantage in being able to run without user
supervision in cases where the same thing had to be done over and
over again, such as the archetypal case of payroll processing.
Therefore, many modern computers have retained some form of
batch capability to supplement their interactive mode. It is recom-
mended, however, that such batch modes provide some opportu-
nity for the user to continuously monitor the progress of the batch
job if desired, such that the user can interrupt and/or modify the
job. It is very frustrating to have a long computation run almost to
the end only to have to be discarded because the last command
should have been modified.

Batch interfaces have enjoyed a renaissance recently in the form of
systems accessed through the exchange of electronic mail
messages, such as the bibliography server described on page 303.

51

Usability Engineering

For example, the ephemeral interest group system [Brothers et al.
1992] allowed users to set up informal discussion groups that were
maintained by a central server. If they wanted to get a copy of the
discussion so far, users could send an email message to the server
specifying the number of the group as well as a special keyword.
The server would reply with a return message containing its
records of the specified discussion group. In a similar manner,
users could join and leave interest groups and get a list of the other
members of a group by sending specialized messages to the server.
Many other services exist on various email systems, all based on
batch-style interaction, and some computer systems can even be
accessed through fax messages [Johnson et al. 1993]. The difference
from traditional batch systems is that email and fax interfaces often
can be accessed from anywhere in the world.

3.2 Line-Oriented Interfaces

Time-sharing systems were invented around 1960 [Lee et al. 1992]
as a way to allow several users simultaneous interactive access to a
single mainframe computer. A major problem with time-sharing is
the small amount of computational resources available to support
the user interface for any given user, so early time-shared user
interfaces often used line-oriented interfaces.

In spite of the primitive interfaces to early time-shared computers,
the very introduction of such a major feature for the sole benefit of
the human users gave rise to an increased awareness of user inter-
face issues. J. C. R. Licklider, who played a central role in early
work on time-sharing, also wrote a very influential paper, “Man—
Computer Symbiosis” [Licklider 1960], which was an early call to
arms for getting computers to reflect the user’s needs and abilities
more closely.

As shown in Figure 4, line-oriented interfaces were basically one-
dimensional interfaces, where the user could only interact with the
computer on the single line that served as the command line. Once
the user had hit the return key, the input could be modified no
further. Similarly, once the computer had output a line of informa-

52

Generations of User Interfaces

mv reviews.received

reviews.new Name John Jones —F
touch City NyacH =
reviews.received State NY p— &
chmod a+rw ZIP 10960 E g bw
reviews.received g

. o E | the user. Espe-
cat reviews.new >> Fl=Help : cia]lyiflhep\:ord
reviews.olll F2=New Customer wrap is decent.

Figure 4 Examples of a line-oriented, a full-screen, and a graphical user
interface. The line-oriented interface allows the user to modify the last line
only and is thus one dimensional. The full-screen interface allows the user
to move about in two dimensions, and the graphical interface almost adds
a third dimension through the overlapping windows.

tion to the user, it was frozen and could not be modified to reflect
any changes in the data. Line-oriented interfaces were originally
implemented on tele-typewriters (TTYs), where the interaction was
printed on an endless roll of paper passing through the typewriter.
Later versions did use terminal screens, but continued to treat the
text as frozen once it had scrolled above the command line. Such an
interface is often called a “glass-TTY.” Even though glass-TTYs
represented a more advanced technology than the paper-based
TTYs, they were somewhat of a step backwards in terms of
usability, as the user could no longer read more than the last 24
lines or so of text. The endless scroll of paper at least had the
advantage of keeping a permanent record of the entire interaction
and allowing the user access to large amounts of information.

Since line-oriented interfaces did not allow users to move about the
screen, their interaction techniques were mostly limited to ques-
tion-answer dialogues and the typing of commands with parame-
ters. Question—answer dialogues involve exchanges prompted by
the computer, where the user answers the computer’s questions
one at a time. Such dialogues are thus especially suited for situa-
tions where the dialogue is well structured with a small number of
options that can be predicted in advance, and where it is acceptable
to have the user be directed by the computer rather than having
freedom to structure the task in alternative ways. These character-

53

Usability Engineering

istics are true of many walk-up-and-use systems for novice or
casual users, and question-answer dialogues are therefore still
being used, even in systems that have otherwise left the line-
oriented interaction style. Two problems with question-answer
dialogues are that users may want to change earlier answers and
that they need to answer the current question without knowing
what the following questions will be. A typical example of both
these problems is the question “Enter city” as part of a dialogue
to elicit a user’s address. Many people will answer something like
“Morristown, NJ 07960” without knowing that the next ques-
tion will be “State” or “ZIP.” This example obviously indicates
the need to offer the user facilities for editing previous replies in a
question—answer dialogue.

Most line-oriented user interfaces were built on command
languages of various sorts, and much early research in the user
interface field involved the proper selection of command names.
Some command languages are very powerful and allow the
construction of very complicated sequences of commands with
huge sets of modifiers and parameters. Unfortunately, command
languages are normally also quite unforgiving of user errors since
they require the user to specify the desired command in exactly the
required format, which the user has to remember without much
help from the computer.

To speed up interactions and reduce the risk of spelling errors,
most command languages allow the user to abbreviate the
command names. There are many reasonable ways to abbreviate
commands, including truncation and vowel removal [Ehrenreich
1985]. The most important abbreviation guideline is to choose a
single, consistent rule for generating the abbreviations [Streeter et
al. 1983] and then explaining that rule in the manual.

3.3 Full-Screen Interfaces

After some time with glass-TTYs, where only the bottom line of the
terminal could be modified, computers started taking advantage of
the modifiable nature of the entire screen, and full-screen interfaces

54

Generations of User Interfaces

were introduced, changing the space of interface design from one
to two dimensions. A classic use of the full screen is form-filling
dialogues, where the user is presented with a number of labelled
fields that can be edited in any sequence desired by the user. Form
fill-in still exists in modern interfaces in the form of dialog boxes,
even though dialog boxes are more dynamic than traditional forms
since they can contain pop-up menus and other ways to make the
computer help the user while the form is being filled out.

In addition to menus, which are discussed further in the subsection
below, many full-screen interfaces also use function keys as a
primary interaction style. In principle, a function key is just a pack-
aging of a complete command into a single lexical user operation.
Two main advantages of function keys are that they serve as inter-
action accelerators and that there are so few of them that users
often are able to learn them by heart. Since the exact interpretation
of a function key can depend on the screen object pointed to by the
cursor, some uses of function keys allowed an early approximation
to the point-and-click interaction style of modern mouse-based
interfaces.

Menu Hierarchies

Full-screen interfaces often depend heavily on hierarchically
nested menus, with each menu taking up the full screen. In prin-
ciple, menus can also be used in line-oriented interfaces, since it is
possible for the user to choose from a menu by typing an indication
of the desired option on the command line, even if the menu itself
has scrolled up into the inactive area of the screen. In practice,
however, menus seem to be used more in full-screen systems, and
they are of course also being used extensively in most modern
window systems.

The design of hierarchical menus [Paap and Roske-Hofstrand 1988]
is especially important in many full-screen interfaces and has
indeed been studied extensively. The best advice is obviously to
avoid hierarchical menus since they hide options from the user and
require the introduction of an extra set of interaction techniques for
navigating the hierarchy. Therefore, it is often better to overload a
nonhierarchical menu slightly than to split it into a hierarchy. Even

55

Usability Engineering

Figure 5 Example of broad and deep menu hierarchies, both providing
the user access to 13 commands (the leaf nodes of the trees).

so, many systems do include so many features that a menu hier-
archy is necessary to access them all.

The basic trade-off in hierarchical menu design is between depth
and breadth. As shown in Figure 5, a flat, broad menu does not
require the user to go through as many levels as a deep menu,
thereby reducing the need for user navigation. At the same time,
each node in the menu hierarchy becomes more complex in a flat
menu structure, making the user choose between more options at
each level. Since both navigation and decisions take time, neither
too deep nor too broad menu trees are desirable in general.

If one assumes that users will make no errors in selecting the
correct option at each menu level, and if one knows the probability
with which the user will select each menu option, then one can
mathematically determine the optimal menu structure [Landauer
and Nachbar 1985; Fisher et al. 1990]. These assumptions may be
somewhat reasonable if the menus are only intended to be used by
expert users or if the menu items have an “obvious” structure
known to all users (such as alphabetical or numerical order). For
nonexpert users, however, the need to consider errors leads to a
requirement for having the various submenus contain “natural”
groupings of options, such that their names on the higher levels are
as understandable as possible. For example, Tullis [1985] used
cluster analysis to group the 271 functions in an operating system

56

Generations of User Interfaces

based on similarity ratings for the various functions from experi-
enced users.

In recent years, many telephone-operated interfaces have been
designed to allow users to access various forms of information and
services, such as their bank account balance, over regular push-
button telephones [Halstead-Nussloch 1989]. These systems are
very often menu-based, but are otherwise closer to the line-
oriented generation of user interfaces since the dialogue is
completely linear. Telephone-operated interfaces are thus an
example of the hybrid nature of menu interfaces and also indicate
that the concept of “generations” of interfaces presented in this
chapter should be seen more as a way to conceptualize the history
of user interface design than as a sequential progression of inter-
faces replacing each other.

3.4 Graphical User Interfaces

Even though graphical user interfaces have a history going back to
Ivan Sutherland’s Sketchpad system from 1962 [Sutherland 1963],
Douglas Engelbart's mouse from 1964 [Engelbart 1988], and
several research systems from the 1970s [Goldberg 1988], they did
not see widespread commercial use until the 1980s [Perry and Voel-
cker 1989]. Most current user interfaces belong to the category of
graphical user interfaces sometimes referred to as WIMP systems
(windows, icons, menus, and a pointing device) after their basic
components. As can be seen in Figure 4, window interfaces almost
add a third dimension to the two dimensions inherent in each
window because of the possibility for overlapping windows. Of
course, overlapping windows are not truly three-dimensional since
it is not possible to see the content of obscured windows without
moving them to the top, so it would be more accurate to refer to
these interfaces as having two-and-a-half dimensions.

The primary interaction style used in many graphical user inter-
faces is direct manipulation [Shneiderman 1983], which is based on
visual representation of the dialogue objects of interest to the user.
Such a continuously updated representation allows the user to

57

Usability Engineering

control the dialogue by moving objects around on the screen and
otherwise manipulating them with the mouse. As an example, the
traditional way of specifying a margin indentation in a word
processor would be to issue a command to indent by a certain
number of spaces. Such a command is an indirect manipulation of
the margin, however, and the user may have to try several times
before the desired layout is achieved. In contrast, direct manipula-
tion of a margin would involve dragging the margin itself or a
margin marker to the desired position. Since the user is getting
continuous feedback about the positioning of the margin as it is
being moved, the result should be less of a surprise. Of course, this
example does show that direct manipulation may not be optimal
for all tasks, in that it would be easier to achieve a very precise
margin setting by typing in the number.

Let’s move from the interaction techniques to the structure of the
interface. Many graphical user interfaces can be said to be object-
oriented.! Object-oriented interfaces are in contrast to the function-
oriented interfaces that were the traditional structure for character-
based interfaces. In a function-oriented interface, the interaction is
structured around a set of commands issued by the user in various
combinations to achieve the desired result. The main interface
issue is how to provide easy access to these commands and their
parameters, and typical solutions include command-line interfaces
with various abbreviation options as well as full-screen menus.

Object-oriented interfaces are sometimes described as turning the
application inside—out as compared to function-oriented interfaces.
The main focus of the interaction changes to become the users’ data
and other information objects that are typically represented graphi-
cally on the screen as icons or in windows. Users achieve their
goals by gradually massaging these objects (using various modifi-
cation features that are of course similar to the concept of

1. Note that I am talking about object-oriented interfaces. These interfaces may
or may not be implemented using object-oriented programming which is a
completely different issue. Once the interface has been structured around
objects, it may feel natural to implemented these objects using object-oriented
programming, but one can also implement object-oriented interfaces using
traditional programming methods.

58

Generations of User Interfaces

commands) until their state, as shown on the screen, matches the
desired result. Unfortunately, experience shows that developers
who are used to designing function-oriented user interfaces have
serious difficulties in changing over to designing object-oriented
interfaces [Nielsen et al. 1992].

An example may clarify the distinction between function- and
object-oriented interfaces and show why not just any graphical
user interface is object-oriented. Consider the task of selecting
certain information from a database, formatting the data, and
printing the resulting report. A function-oriented interface that was
designed by participants in our study started by asking the user to
specify the query criteria in a (graphical) dialog box. Then, the user
had to select formatting options from a (graphical) pull-down
menu and, finally, the user could click on a (graphical) print button.
Only after the last step would the user be shown any actual data
from the database. All these steps were centered around the opera-
tions to be performed by the user and not around the actual data to
be manipulated by the user. An alternative, object-oriented design
would start by showing the user a window with sample records
from the database. Observing this data would make it much easier
for the user to remember the nature of the database contents and
would simplify the task of constructing an appropriate query. As
the user modified the query, the system would dynamically update
the content of the data window to show samples of records satis-
fying the query. Formatting would be done by modifying the
window layout, thus providing immediate feedback on how
typical records would look in the revised formatting. Issuing the
print command would still be the final step, but the output would
not be a surprise to the user, since it would only reflect the data-
centered modifications for which incremental feedback had
already been observed by the user.

Most interface specialists assume that graphical user interfaces
have better usability characteristics in general than character-based
interfaces, especially with respect to learnability for novice users.
In spite of this common belief, there is not much hard experimental
evidence to prove the superiority of graphical interfaces. One of the
few experiments [Margono and Shneiderman 1987] compared a

59

Usability Engineering

graphical file system with a command-line file system and found
that novice users could perform a set of file manipulation tasks in
4.8 minutes while making 0.8 errors with the graphical interface,
whereas the same tasks took 5.8 minutes and involved 2.4 errors
with the command-line interface. Users also strongly preferred the
graphical interface, giving it a satisfaction rating of 5.4 on a 1-6
scale, whereas the command-line interface rated at 3.8.

Another experiment [Rauterberg 1992] compared two versions of a
widely sold database package that was available for both char-
acter-based and graphical computer systems. Novice users were
able to perform 5 test tasks in 82 minutes with the character-based
user interface and in 49 minutes with the graphical user interface.
Expert users performed the same tasks in 25 and 10 minutes,
respectively, showing that the graphical user interface was better
for both user categories.

One of the questions I get asked the most is the extent to which
graphical user interfaces have been measured to be better than
character-based user interfaces. Studies like the two mentioned
here are pitting concrete implementations against each other, and
therefore do not really answer the general question of whether
graphical user interfaces are really better. To some extent, the ques-
tion is meaningless since one will always be able to design an atro-
cious graphical interface that will test out worse than a highly
polished character-based interface. In one study comparing two
graphical interfaces, two command-line interfaces and one full-
screen menu interface, Whiteside et al. [1985] concluded that there
were no systematic differences in usability between the interaction
paradigms but that the care with which the interface is crafted was
more important.

Even so, it does seem that graphical user interfaces enjoy an advan-
tage over character-based interfaces, if for no other reason than the
potential they offer for richer interface designs. Anything that can
be done in a character-based user interface can also be done in a
graphical user interface just by refraining from using the graphics,
whereas the reverse is obviously not true. Also, the large screens
and multiple windows, while not inherently restricted to graphics

60

Generations of User Interfaces

screens, offer better possibilities for users to interact with multiple
applications and data objects at the same time, thus better
matching the task requirements of busy business professionals,
process control operators, and many other user groups. Finally, the
use of an independent pointing device such as the mouse offers the
user a sense of control over the interface and a natural way to move
about screens which can be made more compelling through the use
of graphic design.

In fact, graphical interfaces can sometimes be too natural and
compelling, especially if the actual system does not support user
expectations. For example, novice users of systems where file
manipulation is performed by dragging icons can sometimes be
observed trying to perform text editing operations by (unsuccess-
fully) dragging pieces of text around on the screen [Nielsen 1987b].
These novice users quite reasonably transferred their knowledge of
how to move objects from the file system to the text editor, but
unfortunately, the two parts of the system did not view “moving
things” as a single, generic command that could be accomplished
by a single interaction technique.?

Another example of the abductive nature of graphical interfaces is
seen in the calculator example in Figure 6. When I asked 24 experi-
enced users of a graphical user interface how they could operate
the Calculator utility in their system (having an interface similar to
the one in Figure 6), 13 stated that it could only be operated by the
mouse, and 11 stated that it could be operated either by mouse
clicks or through the keyboard [Nielsen 1987b]. In fact, the calcu-
lator could be operated through either interaction technique. In
other words, more than half of the users had formed an erroneous
functional mental model [Nielsen 1990c] of the Calculator utility
because the direct manipulation part of the interface was so
convincing that it kept them from discovering the other part of the
interface.

2. Based on these and other research results, some later systems have intro-
duced a “drag and drop” feature for moving word processor selections and
spreadsheet cells by direct manipulation.

61

Usability Engineering

[0 Nielsen Calc

Figure 6 A simple calculator operated by direct manipulation.

Unfortunately, direct manipulation interfaces may be harder to use
for some disabled users than the traditional, text-only interfaces
were [Newell 1993]. Users with motor difficulties may have no
problems operating a keyboard with its discrete nature: Even if you
do not hit a key exactly right, the character still appears perfectly
on the screen (and you can backspace if you hit the wrong key). In
contrast, direct manipulation is much more dependent on fine
control of a continuous input device, the mouse. As another
example, blind users cannot see icons and objects on the screen and
will thus have trouble manipulating them [Griffith 1990]. Consid-
erable research efforts are underway to solve or alleviate these
problems, using various techniques like audible representations of
the various windows on a screen [Edwards 1988; Mynatt and
Edwards 1992], but in general it does seem that graphical user
interfaces are a detriment to this particular category of users.

3.5 Next-Generation Interfaces

The next generation of user interfaces is already under develop-
ment in laboratories around the world [Nielsen 1993a]. It is likely
that the trend from the previous generations will continue, and that
the dimensionality of user interfaces will increase from the current
2.5 to a full 3 (or more) dimensions. Common ways to add a dimen-
sion to user interfaces include adding time (in the form of anima-
tion [Baecker et al. 1991; Robertson et al. 1993]), sound [Gaver 1989]

62

Generations of User Interfaces

or voice [Tucker and Jones 1991], as well as a true third spatial
dimension in the form of virtual reality systems [Biocca 1992;
Mercurio and Erickson 1990; Pausch 1991; Rheingold 1991; Thomas
and Stuart 1992].

Much of the original vision of highly personal and portable
computing was described in a pioneering article introducing a
hypothetical “dynabook” (dynamic book) computer [Kay and
Goldberg 1977]. Even though current personal computers have
achieved graphical user interfaces and even some portability, they
are still far from the early ideal, where computers would be as easy
to use and to carry around as books.

The two easiest predictions regarding the next generation of user
interfaces are thus that they will include higher dimensionality
with more media types and that they will be highly portable and
personal, while utilizing cellular modems and other communica-
tions technology to achieve tight connectivity.

In addition, it is likely that next-generation user interfaces will be
more object-oriented in terms of their functionality and not just in
terms of information manipulation, as has been the case with many
graphical user interfaces as discussed on page 58.

Traditional operating systems were based on the notion of applica-
tions that were used by the user one at a time. Even window
systems and other attempts at application integration typically
forced the user to “be” in one application at a time, even though
other applications were running in the background. Also, any
given document or data file was only operated on by one applica-
tion at a time. Some systems allow the construction of pipelines
connecting multiple applications, but even these systems still basi-
cally have the applications act sequentially on the data.

The application model is constraining to users who have integrated
tasks that require multiple applications. Approaches to alleviate
this mismatch in the past have included integrated software
[Nielsen et al. 1986] and composite editors that could deal with
multiple data types in a single document. No single program is
likely to satisfy all computer users, however, no matter how tightly

63

Usability Engineering

integrated it is, so other approaches have also been invented to
break the application barrier. Cut-and-paste mechanisms have
been available for several years to allow the inclusion of data from
one application in a document belonging to another application.
Recent systems even allow live links back to the original applica-
tion such that changes in the original data can be reflected in the
copy in the new document. However, these mechanisms are still
constrained by the basic application model that require each docu-
ment to belong to a specific application at any given time.

An alternative model is emerging in object-oriented operating
systems where the basic object of interest is the user’s document.
Any given document can contain subobjects of many different
types, and the system will take care of activating the appropriate
code to display, print, edit, or email these data types as required
[Banning 1984; Dreger et al. 1992; Gates 1990]. The main difference
is that the user no longer needs to think in terms of running appli-
cations, since the data knows how to integrate the available func-
tionality in the system. In some sense, such an object-oriented
system is the ultimate composite editor, but the difference
compared to traditional, tightly integrated multi-media editors is
that the system is open and allows plug-and-play addition of new
or upgraded functionality as the user desires without changing the
rest of the system.

Because I am still using a system based on the traditional applica-
tions model, I currently have about six spell checkers on my
personal computer, since each application has its own. This profu-
sion of spell checkers leads to problems with inconsistent interfaces
and the resulting increase in learning time and usage errors, and it
requires me to update six different “personal” dictionaries with the
specialized terms and proper names used in my writing. Also, my
wealth of spell checking functionality is restricted to work within
some applications and does not help me when I am using others,
such as my electronic mail package.

Future object-oriented software structures might allow me to add
various types of “language servers” to my system as needed,
including a high-powered spell checker, a thesaurus, and a

64

Generations of User Interfaces

grammar assistant. The increasing need to design user interfaces
for international and multilingual use certainly implies major bene-
fits from an ability to change the language of the “language server”
in the system and have the new language apply to all other system
features without the need to reprogram them.

A major dialogue style for next-generation user interfaces may be
noncommand user interfaces [Nielsen 1993a]. All user interface
styles until now have at least had the concept of commands in
common and were based on the principle of an explicit dialogue
between the user and the computer in which the user ordered the
computer to do certain specific actions. In contrast, many current
research efforts aim at systems that allow the user to focus on the
domain instead of having to control the computer explicitly. In
these future systems, the computer will take over responsibility for
the interaction, basing its actions on its observations of the user,
using technologies like active badges [Want et al. 1992], eyetracking
[Jacob 1991], gesture recognition [Kurtenbach and Hulteen 1990;
Rhyne and Wolf 1993], and semi-intelligent analyses of the user’s
actions. Some systems go so far as to immerse the user in a simu-
lated world with devices like headmounted displays [Steuer 1992],
but it is also possible to achieve much of the same effect while
staying with the basic workstation model of computing.

For example, the Portholes system for connecting work groups at
remote locations displays miniature images of each participant’s
office as well as meeting areas [Dourish and Bly 1992]. These
images are refreshed every few minutes and thus allow people at
each location to get a general idea of which colleagues are around
and what they are doing, but without the privacy intrusion that
might follow from broadcasting live video. For the purposes of the
current discussion, an important point about Portholes is that the
various participants do not need to take any action to inform their
co-workers that they are in their office or that they are meeting
with somebody and should not be disturbed. This information is
communicated to the system by virtue of the regular activities the
users would do anyway, thus allowing them to focus on their real-
world task and not on using a computer. Experience with other
systems for computer-supported cooperative work has shown that

65

Usability Engineering

people are reluctant to expend effort on entering information into a
computer for the sole purpose of helping others [Grudin 1988], so
this type of interface design to allow users to focus on their work is
probably the only one that would work in the long term.

When the computer is allowed to change the user interface, it can
adapt the interaction to the user’s specific usage circumstances and
location. For example, if the computer knows where the user is, it
can enlarge the text on the display if the user is standing up, or it
could speak out important alert messages by speech synthesis if
the user was in the other end of the office. Furthermore, the
computer could act on important electronic mail arriving while the
user was out of the office by one of several means: activating the
user’s beeper, ringing a phone in the office where the user was,
downloading the message to the user’s notebook computer over
the wireless network, or sending a fax to the user’s hotel. The exact
delivery mechanism would be chosen by the computer based on
knowledge of the user’s whereabouts and preferences.

Computer control of the interface may be resented by some users if
it is not designed carefully. Many forms of adaptive interfaces may
be readily accepted because they simply cause the computer to
behave the way one would naturally expect it to do if it were part
of the traditional physical world. For example, the organization of
kitchen tools in drawers and cabinets adapts by itself to cause the
most frequently used tools to be on top and in front, whereas less
frequently used tools are hidden [Hill and Hollan 1992]. In a
similar manner, several current applications augment their “ File”
menu with lists of the last five or so files used by the user in that
application, under the assumption that recently used files are likely
to be among the more frequently used ones in the future and thus
should be made more easily accessible. This assumption seems
reasonable, and a study of somewhat similar adaptive menus
found them to be an improvement over static menus [Greenberg
and Whitten 1985]. Given the observation that users tend to have
several working sets of data and tools that are used together
[Henderson and Card 1986], it might be better, though, to have the
computer build cross-application object lists that can be associated
with the user’s various tasks.

66

Generations of User Interfaces

3.6 Long-Term Trends in Usability

Gould et al. [1991] discuss the long-term trends in usability and
conclude that they are not known with the same certainty as the
long-term trends of many other industries. For example, statistics
on accidents per person-kilometer are readily available to chart
progress in automobile and highway design as well as aircraft and
airport design. Even within the computer industry, we have well-
known measures of the progress in some system components such
as density and price of memory chips and speed of CPUs.

In contrast, usability has not been measured over the years, and it
is not even certain that such measures would have been mean-
ingful, had they been made. Given that the user populations have
expanded dramatically from the early computers to mainframes to
personal computers, it would not be reasonable to use the same
metric to compare a 1950s line-oriented interface with a 1970s full-
screen interface with a 1990s graphical user interface, since each
interface hopefully had been designed with the user population
and the typical tasks of that year in mind. Happ [1994] uses the
term “usability foresight” to refer to the potential for extending
these changes in usability to predict future interface needs: if, for
example, we expect the changing user population to require
learning times of no more than 10% of the current learning time for
a certain system, we can start speculating about the kinds of inter-
face changes that would be needed to achieve that goal.

In spite of the lack of concrete data, there are no doubts that
usability has improved over the years to the extent that a broader
and less technically inclined part of the population can now learn
to use computers. Unfortunately, it does not seem that user produc-
tivity has improved to the same extent that system learnability has
[Landauer 1994]. Users can certainly do more things with
computers than they ever could, and the richness of the interfaces
has increased from zero and one dimensions to two and a half and
three, but users may not always get their job done much faster as a
result.

67

Usability Engineering

A side effect of the increased emphasis on usability in modern
systems and their enhanced user interface capabilities has been to
raise users’ expectations. Since some software has highly polished
user interfaces, users have grown to expect decent usability from
all their systems, and people’s patience with poor user interfaces
has been reduced. Some shrink-wrap applications are now
designed by vendors with a staff of 30 or more crack usability
specialists, and users are now judging other interfaces, including
internally developed systems, by the standards set by the best of
these applications.

One potential opportunity for long-term progress in usability is
that new user interface generations can build on the capabilities of
earlier generations, while adding new interaction capabilities. For
example, graphical user interfaces include textual user interfaces as
a special case and may have function keys, command languages,
and hierarchical menus to the extent that these interaction tech-
niques are better than direct manipulation for part of an interface.
Thus, a new generation of user interfaces need not sacrifice what-
ever usability has already been achieved. It may not always be
possible to transfer research results from the earlier user interface
generations without modifications, however, since interaction tech-
niques change by the context in which they are placed.

Table 6 shows a summary of the most important interaction styles
discussed in this chapter. It can be seen that several interaction
styles are used across multiple generations of user interfaces,
though their relative importance may vary. Shneiderman [1991]
lists some common sense rules for choosing an appropriate interac-
tion style for a system. For example, systems that involve dealing
with data from paper forms should probably be designed using a
form fill-in dialogue, and if the user is furthermore expected to be
an expert, the interface can be designed as a dense display with
multiple fields crammed into as few screens as possible. Unfortu-
nately, it is currently impossible to give very firm rules of this kind.
There are too many exceptions, where the detailed characteristics
of the domain, the users, or their task dictate other approaches.

68

Generations of User Interfaces

Herdotion Mainly Used In Main Characteristics
Style
. Does not require user intervention,
Batch E;tgi? sp ercr)\;:;zslng, works even when user and computer
are in different time or place.
Question— - Computer controls the user, so suited
Answer Ling-ofianied for casual use.
Easy to edit and reuse command his-
E:?T:ng Line-oriented tory. A powerful language can support
guag very complex operations.
Function Fast entry of a few standard com-
Keys Full-screen, WIMP | - ands, but limited flexibility.
Form Fill-in || Full-screen, WIMP L\)/Ina::r;y fields can be seen and edited at
Full-screen, WIMP, | Frees the user from remembering
Menus Telephone-based options, at cost of potentially being
interfaces slow or having confusing hierarchy.
Direct . .. | User in control. Enables metaphors
Manipulation VEIMF, Virtual toality from real world. Good for graphics.
The user is freed to concentrate on the
domain and need not control the com-
) puter. Computer monitors users and
(Njg?nman d \F/:Jr;ﬂra? rsg;tittayms, interprets their actions, so suited for
cases where misinterpretations are
unlikely or without serious conse-
quences.
Natural Ideally, allows unconstrained input to
Language FUlre systoms handle frequently changing problems.

Table 6 Summary of the main interaction styles.

Natural-language interfaces are not discussed much in this book.
Certainly, these interfaces have their own usability problems and
need usability engineering efforts to be successful, and even a
computer with perfect natural-language capabilities could be hard
to use. Just consider how difficult it sometimes is to get another
human to understand the way you want things done. Also, of
course, a natural-language interface restricted to a single or a few
languages would have poor international usability as it is more

69

Usability Engineering

difficult for people to construct complete sentences in a foreign
language than to type a few command keywords or to pick from a
menu. The main reason natural language is not considered in
| greater detail in this book is that it is still not a practical interaction
I style except for some constrained database applications. In any
1 case, there is no reason to believe that the usability engineering
{‘f methods for natural language would be much different from those
‘ needed for traditional interfaces. For example, the “Wizard of Oz”
method (see page 96) would seem ideal for the testing of prelimi-

(] nary prototypes.

70

chaptera 1 e Usability Engineering
Lifecycle

Usability engineering is not a one-shot affair where the user inter-
face is fixed up before the release of a product. Rather, usability
engineering is a set of activities that ideally take place throughout
the lifecycle of the product, with significant activities happening at
the early stages before the user interface has even been designed.
The need to have multiple usability engineering stages supplement
each other was recognized early in the field, though not always
followed on development projects [Gould and Lewis 1985].

Usability cannot be seen in isolation from the broader corporate
product development context where one-shot projects are fairly
rare. Indeed, usability applies to the development of entire product
families and extended projects where products are released in
several versions over time. In fact, this broader context only
strengthens the arguments for allocating substantial usability engi-
neering resources as early as possible, since design decisions made
for any given product have ripple effects due to the need for subse-
quent products and versions to be backward compatible. Conse-
quently, some usability engineering specialists [Grudin et al. 1987]
believe that “human factors involvement with a particular product
may ultimately have its greatest impact on future product releases.”
Planning for future versions is also a prime reason to follow up the
release of a product with field studies of its actual use.

71

Usability Engineering

1. Know the user
a. Individual user characteristics
b. The user’s current and desired tasks
c. Functional analysis
d. The evolution of the user and the job
Competitive analysis
Setting usability goals
a. Financial impact analysis
Parallel design
Participatory design
Coordinated design of the total interface
Apply guidelines and heuristic analysis
Prototyping
Empirical testing
lterative design
a. Capture design rationale
11. Collect feedback from field use

wn

CONIO A

-t

Table 7 The stages of the usability engineering lifecycle model.

For a company that sells software or other products on the open
market, the usability of each product will contribute to the
company’s general reputation as a quality supplier, and just a
single product with poor usability can cause severe damage to the
sales of the entire product family.

Table 7 shows a summary of the lifecycle stages discussed in this
chapter. It is important to note that a usability engineering effort
can still be successful even if it does not include every possible
refinement at all of the stages. Section 4.13, Prioritizing Usability
Activities, on page 112 contains a discussion of how to choose
usability methods under varying levels of resource constraints.

The lifecycle model emphasizes that one should not rush straight
into design. The least expensive way for usability activities to influ-
ence a product is to do as much as possible before design is started,
since it will then not be necessary to change the design to comply
with the usability recommendations. Also, usability work done
before the system is designed may make it possible to avoid devel-
oping unnecessary features. Several of the pre-design usability activ-
ities might be considered part of a market research or product
planning process as well, and may sometimes be performed by

72

The Usability Engineering Lifecycle

marketing groups. However, traditional market research does not
usually employ all the methods needed to properly inform usability
design, and the results are often poorly communicated to devel-
opers. But there should be no need for duplicate efforts if manage-
ment successfully integrates usability and marketing activities
[Wichansky et al. 1988]. One outcome of such integration could be
the consideration of product usability attributes as features to be
used by marketing to differentiate the product. Also, marketing
efforts based on usability studies can sell the product on the basis of
its benefits as perceived by users (what it can do that they want)
rather than its features as perceived by developers (how does it do it).

4.1 Know the User

The first step in the usability process is to study the intended users
and use of the product. At a minimum, developers should visit a
customer site so that they have a feel for how the product will be
used. Individual user characteristics and variability in tasks are the
two factors with the largest impact on usability, so they need to be
studied carefully. When considering users, one should keep in
mind that they often include installers, maintainers, system admin-
istrators, and other support staff in addition to the people who sit
at the keyboard. The concept of “user” should be defined to
include everybody whose work is affected by the product in some
way, including the users of the system’s end product or output
even if they never see a single screen.

Even though “know the user” is the most basic of all usability
guidelines, it is often difficult for developers to get access to users.
Grudin [1990b, 1991a and b] analyzes the obstacles to such access,
including

* The need for the development company to protect its developers
from being known to customers, since customers may bypass
established technical support organizations and call developers
directly, sidetracking them from their main job.

¢ The reluctance of sales representatives to let anybody else from
the company talk to “their” customers, fearing that the devel-

73

Usability Engineering

opers or usability people may offend the customer or create
dissatisfaction with the current generation of products.

¢ User organizations only making users available for a short time,
either because they are highly paid executives or because they
are unionized and dislike being studied.

All these issues are real and need to be addressed when trying to
get to “know the user.” No universal solutions are available, except
to recommend an explicit effort to get direct access to representa-
tive users and not be satisfied with indirect access and hearsay. It is
amazing how much time is wasted on certain development
projects by arguing over what users might be like or what they may
want to do. Instead of discussing such issues in a vacuum, it is
much better (and actually less time-consuming) to get hard facts
from the users themselves.

Individual User Characteristics

It is necessary to know the class of people who will be using the
system. In some situations this is easy since it is possible to identify
these users as concrete individuals. This is the case when the
product is going to be used in a specific department in a particular
company. For other products, users may be more widely scattered
such that it is possible to visit only a few, representative customers.
Alternatively, the products might be aimed toward the entire popu-
lation or a very large subset.

By knowing the users’” work experience, educational level, age,
previous computer experience, and so on, it is possible to antici-
pate their learning difficulties to some extent and to better set
appropriate limits for the complexity of the user interface.
Certainly one also needs to know the reading and language skills
of the users. For example, very young children have no reading
ability, so an entirely nontextual interface is required. Also, one
needs to know the amount of time users will have available for
learning and whether they will have the opportunity for attending
training courses: The interface must be made much simpler if users
are expected to use it with minimum training.

74

The Usability Engineering Lifecycle

The users” work environment and social context also need to be
known. As a simple example, the use of audible alarms, “beeps,” or
more elaborate sound effects may not be appropriate for users in
open office environments. In a field interview I once did, a secre-
tary complained strongly that she wanted the ability to shut off the
beep because she did not want others to think that she was stupid
because her computer beeped at her all the time.

A great deal of the information needed to characterize individual
users may come from market analysis or from the observational
studies one may conduct as part of the task analysis. One may also
collect such information directly through questionnaires or inter-
views. In any case, it is best not to rely totally on written informa-
tion since new insights are almost always achieved by observing
and talking to actual users in their own working environment.

Task Analysis

A task analysis [Diaper 1989a; Fath and Bias 1992; Johnson 1992] is
essential as early input to system design. The users’ overall goals
should be studied as well as how they currently approach the task,
their information needs, and how they deal with exceptional cir-
cumstances or emergencies. For example, systematic observation of
users talking to their clients may reveal input and output needs for
a transactions-processing system. Sometimes, interviewing or
observing the users’ clients or others who interact with them can
provide additional task analysis insights [Garber and Grunes 1992].

The users” model of the task should also be identified, since it can
be used as a source for metaphors for the user interface (see page
126). Also, seek out and observe especially effective users and user
strategies and “workarounds” as hints of what a new system could
support. Such “lead users” are often a major source of innovations
[von Hippel 1988]. Finally, one should identify the weaknesses of
the current situation: points where users fail to achieve goals,
spend excessive time, or are made uncomfortable. These weak-
nesses present opportunities for improvements in the new product.

A typical outcome of a task analysis is a list of all the things users
want to accomplish with the system (the goals), all the information

75

Usability Engineering

they will need to achieve these goals (the preconditions), the steps
that need to be performed and the interdependencies between
these steps, all the various outcomes and reports that need to be
produced, the criteria used to determine the quality and accept-
ability of these results, and finally the communication needs of the
users as they exchange information with others while performing
the task or preparing to do so.

When interviewing users for the purpose of collecting task infor-
mation, it is always a good idea to ask them to show concrete
examples of their work products rather than keeping the discus-
sion on an abstract level. Also, it is preferable to supplement such
interviews with observations of some users working on real prob-
lems, since users will often rationalize their actions or forget about
important details or exceptions when they are interviewed.

Often, a task analysis can be decomposed in a hierarchical fashion
[Greif 1991], starting with the larger tasks and goals of the organi-
zation and breaking each of them down into smaller subtasks, that
can again be further subdivided. Typically, each time a user says,
“then I do this,” an interviewer could ask two questions: “Why do
you do it?” (to relate the activity to larger goals) and “How do you
do it?” (to decompose the activity into subtasks that can be further
studied). Other good questions to ask include, “why do you not do
this in such and such a manner?” (mentioning some alternative
approach), “Do errors ever occur when doing this?,” and “How do
you discover and correct these errors?” [Nielsen et al. 1986].

Finally, users should be asked to describe exceptions from their
normal work flow. Even though users cannot be expected to
remember all the exceptions that have ever occurred, and even
though it will be impossible to predict all the future exceptions,
there is considerable value to having a list indicating the range of
exceptions that must be accommodated. Users should also be
asked for remarkable instances of notable successes and failures,
problems, what they liked best and least, what changes they would
like, what ideas they have for improvements, and what currently
annoys them. Even though not all such suggestions may be
followed in the final design, they are a rich source of inspiration.

76

The Usability Engineering Lifecycle

Functional Analysis

A new computer system should not be designed simply to propa-
gate suboptimal ways of doing things that may have been insti-
tuted because of limitations in previous technologies. Therefore,
one should not analyze just the way users currently do the task, but
also the underlying functional reason for the task: What is it that
really needs to be done, and what are merely surface procedures
which can, and perhaps should, be changed [Schmidt 1988].

For example, many projects in the computer-supported cooperative
work (CSCW) field assume that face-to-face interaction is the ulti-
mate in communication and that computers should emulate physi-
cally proximate reality (PPR) as closely as possible. In contrast, the
“beyond being there” approach [Hollan and Stornetta 1992;
Brothers et al. 1992] separates the needs of human communication
from the media through which communication has been achieved
so far. Computerized communication tools might be built to take
advantage of the strengths of the computer medium, such as asyn-
chronism, anonymity, searchable archives, and automated replies
and filters, even if the resulting communication mechanisms do not
resemble the way people talk when they are in the same room.

As a more mundane example, initial observations of people
reading printed manuals could show them frequently turning
pages to move through the document. A naive design of online
documentation might take this observation to imply really good
and fast paging or scrolling mechanisms. A functional analysis
would show that manual users really turn pages this much to find
specific information, but they have a hard time locating the correct
page. Based on this analysis, one could design an online documen-
tation interface that first allowed users to specify their search
needs, then used an outline of the document to show locations with
high search scores, and finally allowed users to jump directly to
these locations, highlighting their search terms to make it easier to
judge the relevance of the information [Egan et al. 1989].

Of course, there is a limit to how drastically one can change the
way users currently approach their task, so the functional analysis
should be coordinated with a task analysis.

77

Usability Engineering

The Evolution of the User

Users will not stay the same. Using the system changes the users,
and as they change they will use the system in new ways. Carroll
and Rosson [1991] refer to this dialectic phenomenon as the
“coevolution of tasks and artifacts.” For example, spreadsheets
were initially invented as aids for calculation, but having such a
malleable computerized medium available encouraged users to
integrate noncalculation data in a spreadsheet. Users have often
been known to use spreadsheets for databases [Nielsen et al. 1986],
and these and other uses have led spreadsheet vendors to include
noncalculation features in later versions.

It is impossible to forecast these changes completely as users will
always discover new uses for computer systems after some period
of use, but a flexible design will stand a better chance of supporting
these new uses. Try to make an educated guess based on your
knowledge about how other users have changed in the past. One
way of getting such knowledge is through the post-deployment
field studies discussed on page 109.

A typical change is that users become experts after some time and
want interaction shortcuts (sometimes called accelerators). For
example, a business graphics package might lead novice users
through a series of question-answer screens to specify the main
characteristics of the main types of charts, but expert users will
probably want to be able to change the charts by direct manipula-
tion and maybe even to be given access to a kind of specialized
programming language for the construction of graphics. It is
important not to design just for the way users will use the system
in the first short period after its release.

4.2 Competitive Analysis

As discussed in Section 4.8, prototyping is an important part of the
usability process, and existing, perhaps competing, products are
often the best prototypes we can get of our own product [Byrne
1989]. It is desirable to analyze existing products heuristically

78

The Usability Engineering Lifecycle

according to established usability guidelines and to perform
empirical user tests with these products. A competing product is
already fully implemented and can therefore be tested very easily
[Bachman 1989]. Also, the developers of the existing systems often
have put a reasonable amount of effort into their development
process so that the competing products may work fairly well. This
again means that user testing with existing products can be more
realistic than a test of other prototypes. Users can perform real
tasks on the competing system, making it possible to learn how
well its functionality and interaction techniques support the kinds
of tasks the planned new product is expected to support based on
the initial analysis of the intended users.

If several competing products are available for analysis, one can
furthermore perform a comparative analysis of their differing
approaches to the various user interface design issues for the kind
of product being studied. This will provide ideas for the new
design and will give a list of ad hoc guidelines for approaches that
seem to work and those that should be avoided. Also, reading
trade press reviews can provide some insights into the usability
characteristics and different approaches of a large number of
competing products. Such reviews should be complemented with
more thorough and principled analysis and testing of a smaller
number of important products. Sometimes, competitive analysis
will involve the study of non-computer interfaces. For example, an
electronic reference book project should first studying how people
use traditional printed encyclopedia [Marchionini 1989].

Note that a competitive analysis does not imply stealing other
people’s copyrighted user interface designs. One would hope to be
able to do better than the previous designs as a result of the anal-
yses of their strengths and weaknesses.

4.3 Goal Setting

As discussed in Chapter 2, usability is not a one-dimensional
attribute of a system. Usability comprises several components that
can sometimes conflict. Normally, not all usability aspects can be

79

Usability Engineering

given equal weight in a given design project, so you will have to
make your priorities clear on the basis of your analysis of the users
and their tasks. For example, learnability would be especially
important if new employees were constantly being brought in on a
temporary basis, and the ability of infrequent users to return to the
system would be especially important for a reconfiguration utility
that was used once every three or four months.

As also discussed in Chapter 2, the different usability parameters
can be operationalized and expressed in measurable ways. Before
starting the design of a new interface, it is important to discuss the
usability metrics of interest to the project and to specify the goals of
the user interface in terms of measured usability [Chapanis and
Budurka 1990]. One may not always have the resources available to
collect statistically reliable measures of the usability metrics speci-
fied as goals, but it is still better to have some idea of the level of
usability to be strived for.

For each usability attribute of interest, several different levels of
performance can be specified as part of a goal-setting process
[Whiteside et al. 1988]. One would at least specify the minimum
level which would be acceptable for release of the product, but a
more detailed goal specification can also include the planned level
one is aiming for as well as the current level of performance. Addi-
tionally, it can help to list the current value of the usability attribute
as measured for existing or competing interfaces, and one can also
list the theoretically best possible value, even though this value
will typically not be attained. Figure 7 shows one possible notation,
called a usability goal line, for representing the range of specification
levels for one usability goal.

In the example in Figure 7, the number of user errors per hour is
counted. When using the current system, users make an average of
4.5 errors per hour, and the planned number of user errors is 2.0
per hour. Furthermore, the theoretical optimum is obviously to
have no errors at all. If the new interface is measured at anything
between 1.0 and 3.0 user errors per hour, it will be considered on
target with respect to this usability goal. A performance in the
interval of 3-5 would be a danger signal that the usability goal was

80

The Usability Engineering Lifecycle

User errors per hour using the system:

Minimum Target Exceeds
T T
4.5 3 2 1 0
Current Planned Optimal
value value value

Figure 7 An example of a usability goal line in a notation similar to that
used by Rideout [1991].

not met, even though the new interface could still be released on a
temporary basis since a minimal level of usability had been
achieved. It would then be necessary to develop a plan to reduce
user errors in future releases. Finally, more than 5.0 user errors per
hour would make this particular product sufficiently unusable to
make a release unacceptable.

Usability goals are reasonably easy to set for new versions of
existing systems or for systems that have a clearly defined compet-
itor on the market. The minimum acceptable usability would
normally be equal to the current usability level, and the target
usability could be derived as an improvement that was sufficiently
large to induce users to change systems. For completely new
systems without any competition, usability goals are much harder
to set. One approach is to define a set of sample tasks and ask
several usability specialists how long it “ought” to take users to
perform them. One can also get an idea of the minimum acceptable
level by asking the users, but unfortunately users are notoriously
fickle in this respect; countless projects have failed because devel-
opers believed users’ claims about what they wanted, only to find
that the resulting product was not satisfactory in real use.

Financial Impact Analysis

At about the same time as usability goals are being specified, it is a
good idea to make an analysis of the financial impact of the

81

Usability Engineering

usability of the system. Such an analysis involves estimating the
number of users who will be using the system, their loaded salaries
or other costs, and the approximate time they will be using the
system. The cost of the users’ time is not just their salary but also
other costs, such as various pensions and benefits, employment
taxes or fees charged by the government, and general overhead
costs like the rent of office space. This total cost will be referred to
as the loaded salary or loaded cost of a user.

Financial impact analyses are easiest to make for software that is
being developed in-house or under contract directly from the user
organization, as the savings are readily available as true bottom-
line benefits. For example, consider the development of a software
system for a group of 3,000 specialized staff processing some kind
of service orders. If the loaded cost of the technicians is assumed to
be $25 per hour, and the technicians can be assumed to be using the
system about a third of their working day, we immediately' find
that the annual financial impact of the user interface is approxi-
mately $47,000,000. Furthermore, let us assume that the system is
planned for introduction in two years and that it will then be used
for four years until it is replaced by a new system or a major rede-
sign. Under these assumptions, the annual impact translates into a
total financial impact of $129,000,000, when considering the time
value of money and deflating the impact of money spent in future
years by 10% per year.?

Usability activities that might improve the learnability of the user
interface sufficiently to cut down learning-time by one day would
be worth $600,000, corresponding to a present value of $500,000.
Similarly, usability improvements leading to a 10% increase in user

1. By multiplying by 8 hours per day and 236 working days per year.

2. The deflator should be derived from the expected real return from alterna-
tive investments. A 10% deflator for the real value of money corresponds to an
investment return of 13% per year (the stock market average) minus an infla-
tion rate of 3%. A more elaborate financial model might use a deflator that has
not been adjusted for inflation and then increase the annual estimates of
various cost categories by their expected rate of increase. This latter approach
is more accurate if the increase in salaries and overhead is expected to differ
significantly from the inflation rate.

82

The Usability Engineering Lifecycle

productivity would be worth $4,700,000 per year, or $12,900,000
over four years (again deflating the value of money saved in later
years).> We would normally find it worthwhile to invest a reason-
able amount in usability work in this kind of development project.
Also, this calculation makes it clear that productivity improve-
ments would be worth more than learning time savings for this
product, assuming that the one day and 10%, respectively, are
approximately the magnitude of improvement that can be
expected.

In the case of software being developed for sale on the open
market, user savings are not directly available as profits for the
development organization. Therefore, the financial impact analysis
should have two components: an estimate of the impact on the
development organization (to help determine the magnitude of the
usability budget) and an estimate of the impact on the user organi-
zations (to help prioritize the focus of the available usability
resources). Analyses of the financial impact of usability on the
development organization should include estimates of revenue
loss or enhancements as well as cost estimates like the expense of
servicing calls to customer support lines. Unfortunately, specific
data about these two aspects is usually considered highly secret
proprietary information, since user interfaces now constitute a
major aspect of a company’s competitive advantage.

Anecdotal evidence indicates that some vendors have found that a
product with a usability level below a certain point is simply not
worth selling, since one can predict that it will fail in the market.
Alternatively, customers may buy the product, but they will then
make such excessive demands on the vendor’s technical support
staff that each sale ends up losing money. One example was an
upgrade to a spreadsheet, where the installed base of customers

3. Calculations of present value for this example assume that the savings in
training costs are realized on the first day after the introduction of the system
(that is, 2 years from the present). Productivity savings are realized
throughout the year but for simplicity’s sake, they are calculated as occurring
on a single day half-way through the year. Thus, for example, savings in the
system’s first year of use are deflated by the compound value of 10% over 2.5
years = 27%.

83

Usability Engineering

guaranteed the “success” (in terms of sheer number of sales) of the
upgrade. The installation program supplied with the upgrade had
such a horrible user interface that the customers needed on average
two 20-minute calls to the vendor’s toll-free support line before
they had succeeded in installing their upgrade. Given that it costs
about $20 to service a more typical, 5-minute support call, the
installation user interface (which could probably have been fixed
with a minimum of usability engineering effort) ended up costing
the vendor more than the $70 per user they made selling the
upgrade.? In general, the need to save on customer support is a
driving force for usability engineering in many companies. The
median loaded cost of servicing a customer support call was $23.33
according to a 1993 survey of 148 software vendors in the industry
newsletter Soft Letter.

As an example analysis of the financial impact of a user interface
on the customers, assume that you were developing a word
processor that is expected to sell one million copies. About half of
the users are expected to be secretaries who will be using the word
processor about half of their working day, and the other half of the
users are expected to be business professionals who will be using
the word processor about 10% of their working day. Furthermore,
assume that the loaded cost of a secretary is $20 per hour and that
the loaded cost of a business professional is $100 per hour. This
means that the amount of money spent by users while using the
word processor is about $19,000,000,000 annually (calculated at 8
hours per day and 236 working days per year). This amount is an
indication of the potential value being influenced by the usability
engineer in charge of the word processor’s user interface, even
though it will never show up on the development organization’s
budget.

Assume that we are considering the potential benefits from
improving the efficiency of the word processor’s editing features

4. This example also indicates the necessity of paying attention to the total
user interface in the usability engineering lifecycle. The spreadsheet itself
might have had perfect usability, but the install utility ended up destroying
the product.

84

The Usability Engineering Lifecycle

by 5%. To calculate the savings from such an improvement, we
furthermore need to estimate the proportion of the users’ time
spent editing as opposed to just entering text. Such data should
preferably be gathered from field studies or by logging data from
instrumented copies of installed versions of previous systems. For
the sake of argument, we will assume that 10% of the secretaries’
word processor use is editing and that the corresponding propor-
tion for the business professional users is 25%. This means that
total annual value of the time spent editing by the users of the
word processor is $3,300,000,000, and that the value® of a 5%
savings would be $165,000,000. Of course, the vendor of the word
processor package will not get this money, but there is still some
value to having the users save $165,000,000, and the usability work
that could bring about such savings would be worthy of a larger
part of the budget than work on some other feature that might save
users no more than a few million dollars.

Much of the information needed for the financial impact analysis
should be available from the marketing department. Specifically,
they should have data about the current or projected number of
users in different markets and perhaps be able to provide estimates
of the users’ salary levels.

4.4 Parallel Design

It is often a good idea to start the design with a parallel design
process, in which several different designers work out preliminary
designs [Nielsen et al. 1993, 1994]. The goal of parallel design is to
explore different design alternatives before one settles on a single
approach that can then be developed in further detail and
subjected to more detailed usability activities. Figure 8 is a concep-
tual chart of the relation between parallel and iterative design.

5. In principle, the value of saved time is not the average cost of the
employees’ time, but the marginal value of their time, necessitating the use of a
so-called hedonic wage model [Sassone 1987], but for practical purposes one
can use average values for the type of rough estimate we are making here.

85

Usability Engineering

Released product

Iterative design versions

. Parallel design versions

Original product concept

Figure 8 Conceptual illustration of the relation between parallel and iter-
ative design. Normally, the first prototype would be based on ideas from
several of the parallel design sketches.

Typically, one can have three or four designers involved in parallel
design. For critical products, some large computer companies have
been known to devote entire teams to developing multiple alterna-
tive designs almost to the final product stage, before upper
management decided on which version to release. In general,
though, it may not be necessary for the designers to spend more
than a few hours or at the most one or two days on developing
their initial designs. Also, it is normally better to have designers
work individually rather than in larger teams, since parallel design
only aims at generating rough drafts of the basic design ideas.

In parallel design, it is important to have the designers (or the
design teams) work independently, since the goal is to generate as
much diversity as possible. Therefore, the designers should not
discuss their designs with each other until after they have
produced their draft interface designs.

86

The Usability Engineering Lifecycle

When the designers have completed the draft designs, one will
often find that they have approached the problem in at least two
drastically different ways that would give rise to fundamentally
different user interface models. Even those designers who are
basing their designs on the same basic approach almost always
have different details in their designs. Usually, it is possible to
generate new combined designs after having compared the set of
initial designs, taking advantage of the best ideas from each design.
If several fundamentally different designs are available, it is best to
pursue each of the main lines of design a little further in order to
arrive at a small number of prototypes that can be subjected to
usability evaluation before the final approach is chosen.

A variant of parallel design is called diversified parallel design and is
based on asking the different designers to concentrate on different
aspects of the design problem. For example, one designer could
design an interface that was optimized for novice users, at the
same time as another designer designed an interface optimized for
expert users and a third designer explored the possibilities of
producing en entirely nonverbal interface. By explicitly directing
the design approach of each designer, diversified parallel design
drives each of these approaches to their limit, leading to design
ideas that might never have emerged in a unified design. Of
course, some of these diversified design ideas may have to be
modified to work in a single, integrated design.

It is especially important to employ parallel design for novel
systems where little guidance is available for what interface
approaches work the best. For more traditional systems, where
competitive products are available, the competitive analysis
discussed in Section 4.2 can serve as initial parallel designs, but it
might still be advantageous to have a few designers create addi-
tional parallel designs to explore further possibilities.

The parallel design method might at first seem to run counter to
the principle of cost-effective usability engineering, since most of
the design ideas will have to be thrown away without even being
implemented. In reality, though, parallel design is a very cheap
way of exploring the design space, exactly because most of the ideas

87

Usability Engineering

will not need to be implemented, the way they might be if some of
them were not tried until later as part of iterative design. The main
financial benefit of parallel design is its parallel nature, which
allows several design approaches to be explored at the same time,
thus compressing the development schedule for the product and
bringing it to market more rapidly. Studies have shown that about
a third of the profits are lost when products ship as little as half a
year late [House and Price 1991], so anything that can speed up the
development process should be worth the small additional cost of
designing in parallel rather than in sequence.

4.5 Participatory Design

Even though the advice to “know the user” may have been
followed before the start of the design phase, one still cannot know
the user sufficiently well to answer all issues that come up in doing
the design [Kensing and Munk-Madsen 1993]. Instead of guessing,
designers should have access to a pool of representative users after
the start of the design phase. It is important to have access to the
people who will actually be using the system, and not just to their
managers or union representatives. Even well-intentioned
managers will often not know the exact issues facing users in their
everyday work, and they will normally have different characteris-
tics from the real users in many ways. Elected union leaders may
not be typical workers either, and they may also have spent too
much time in administration.

Users often raise questions that the development team has not even
dreamed of asking. This is especially true with respect to potential
mismatches between the users’ actual task and the developers’
model of the task. Therefore, users should be involved in the
design process through regular meetings between designers and
users. Users participating in a system design process are some-
times referred to as subject matter experts, or SMEs.

Users are not designers, so it is not reasonable to expect them to
come up with design ideas from scratch. However, they are very
good at reacting to concrete designs they do not like or that will not

88

The Usability Engineering Lifecycle

work in practice. To get full benefits from user involvement, it is
necessary to present these suggested system designs in a form the
users can understand. Instead of voluminous system specifications,
concrete and visible designs, preferably in the form of prototypes,
should be employed for this purpose. In early stages of the design
where functional prototypes are not yet available, paper mock-ups
or simply a few screen designs can be used to prompt user discus-
sion.® Even simple, guided discussion can elicit ideas from users.

It is important to realize that participatory design should not just
consist of asking users what they want, since users often do not
know what they want or what they need, or even what the possi-
bilities are. For example, in one study users were first asked to rate
the usefulness of some new features of an editor on the basis of a
description of the features and then asked the same question after
they had tried out the actual features [Root and Draper 1983]. It
turned out that the correlation between the users’ ratings before
and after actual experience with the features was as low as 0.28,
indicating essentially no relation between the two sets of ratings.
See also the discussion of the usability slogan, The User Is Not
Always Right, on page 11.

For larger development projects, thought should be given to peri-
odically refreshing the pool of users who participate in the project
since they risk becoming less representative of the average user
population as their involvement with system development grows.
A user representative who has been to too many design meetings
will be steeped in the developers’ way of thought and will under-
stand the proposed system structure and possibly have a tendency
to accept the rationale for awkward design elements. Fresh users
who are brought in later in the project are more likely to question
such potential problems since they will not know the history of the
design. Furthermore, of course, users are different, so it is
dangerous to rely too much on information from a small set of users

6. I once gave a presentation to a group of users about a proposed user inter-
face using (then) new terminal technology. They listened politely and did not
say anything, until the time when I put a screen dump on the overhead—after
which the audience erupted with questions and comments [Nielsen 1987a].

89

Usability Engineering

that never changes. On the other hand, there are trade-offs involved
in changing user representatives, since one also does not want to
spend time explaining the project to new people, so such changes
should not be made more than a few times during a project.

4.6 Coordinating the Total Interface

Consistency is one of the most important usability characteristics
(see Section 5.4 on page 132). Consistency should apply across the
different media which form the total user interface, including not
just the application screens but also the documentation, the online
help system, and any online or videotaped tutorials [Perlman 1989]
as well as traditional training classes. For example, in one case
studied by Poltrock [1994], training materials described an obsolete
way of using an interface because the training department had not
been informed about the introduction of a redesigned, and
presumably better, interface.

Consistency is not just measured at a single point in time but
should apply over successive releases of a product so that new
releases are consistent with their predecessors. Also, since very few
companies produce only a single product, efforts should be made to
promote consistency across entire product families. Corporate user
interface standards are one common way of promoting that goal. In
spite of the general desirability of consistency, it is obviously not
the only desirable usability characteristic, and consistency may
sometimes conflict with other interface desiderata [Grudin 1989]. It
is necessary to maintain some flexibility so that bad design is not
forced upon users for the sake of consistency alone.

To achieve consistency of the total interface it is necessary to have
some centralized authority for each development project to coordi-
nate the various aspects of the interface. Typically this coordination
can be done by a single person, but on very large projects or to
achieve corporate-wide consistency, a committee structure may be
more appropriate. Also, interface standards (discussed further in
Chapter 8) are an important approach to achieving consistency. In
addition to such general standards, a project can develop its own

90

The Usability Engineering Lifecycle

ad hoc standard with elements like a dictionary of the appropriate
terminology to be used in all screen designs as well as in the other
parts of the total interface.

In addition to formal coordination activities, it is helpful to have a
shared culture in the development groups with common under-
standing of what the user interface should be like. Many aspects of
user interface design (especially the dynamics) are hard to specify
in written documents but can be fairly easily understood from
looking at existing products following a given interface style. Actu-
ally, prototyping also helps achieve consistency, since the prototype
is an early statement of the kind of interface toward which the
project is aiming. Having an explicit instance of parts of the design
makes the details of the design more salient for developers and
encourages them to follow similar principles in subsequent design
activities [Bellantone and Lanzetta 1991].

Furthermore, consistency can be increased through technological
means such as code sharing or a constraining development envi-
ronment. When several products use the same code for parts of
their user interface, then those parts of the interfaces automatically
will be consistent. Even if identical code cannot be used, it is
possible to constrain developers by providing development tools
and libraries that encourage user interface consistency by making it
easiest to implement interfaces that follow given guidelines
[Tognazzini 1989; Wiecha et al. 1989].

4.7 Guidelines and Heuristic
Evaluation

Guidelines list well-known principles for user interface design
which should be followed in the development project. In any given
project, several different levels of guidelines should be used:
general guidelines applicable to all user interfaces, category-specific
guidelines for the kind of system being developed (e.g., guidelines
for window-based administrative data processing or for voice
interfaces accessed through telephone keypads), and product-

91

Usability Engineering

specific guidelines for the individual product. All these guidelines
can be used as background for heuristic evaluation as discussed in
Section 5.11 on page 155.

For example, a general guideline could be to “provide feedback” to
the user about the system’s state and actions. This general advice
could be made more specific in a category-specific guideline for
graphical user interfaces: Ensure that the main objects of interest to
the user are visible on the screen and that their most important
attributes are shown. Finally, this guideline could be further devel-
oped into a product-specific guideline for the design of a graphical
file system: Have each file and subdirectory represented by an icon
and use different icon shapes to represent different classes of
objects (data files, executable files, and subdirectories). It would
then be possible to check that each aspect of the file system
complied with this latter rule.

As another example, the same general guideline, “provide feed-
back,” could be applied to hypermedia navigation to recommend
that users be informed about the transition that takes place when
they move from one node to another. Experience with existing
products or reading of the research literature [Merwin et al. 1990]
could then lead to a further ad hoc guideline for a particular hyper-
text document stating that an animated visual effect should be
used to signify navigational transitions rather than having an
instantaneous change to the destination screen.

The difference between standards and guidelines is that a standard
specifies how the interface should appear to the user, whereas a set
of guidelines provides advice about the usability characteristics of
the interface. Standards are discussed further in Chapter 8 and
have interface consistency as one of their major objectives. Hope-
fully a given standard will follow most of the traditional usability
guidelines so that the interfaces designed according to the standard
will also be as usable as possible. For example, a guideline may
state that users should always be able to back out from any undes-
ired system state. One standard might instantiate that general
guideline by specifying that anundo command should always be
available and that it should be shown as an icon at the top right of

92

The Usability Engineering Lifecycle

the screen. Another standard might follow the same guideline by
returning to the previous system state whenever the user hits the
escape key.

Several very extensive collections of general user interface guide-
lines exist, including

¢ [Brown 1988] with 302 guidelines

¢ [Marshall et al. 1987] with 162 guidelines

* [Mayhew 1992] with 288 guidelines

* [Smith and Mosier 1986] with 944 guidelines

It is thus normally possible to rely on the international user inter-
face community for general guidelines, whether expressed individ-
ually in research papers or collected in larger guidelines reports.
Chapter 5 in this book provides a short list of the most important
general guidelines. Some category-specific guidelines can also be
found in the research literature, but they are also often a product of
corporate memory, to the extent that lessons from previous projects
are generalized and made available to future projects. Finally,
product-specific guidelines are often developed as part of indi-
vidual projects as project members gain a better understanding of
the special usability aspects of their system. Such understanding
can be gathered early on through competitive analysis as discussed
on page 78, and additional insights typically come from user
testing of prototypes of the new system.

4.8 Prototyping

One should not start full-scale implementation efforts based on
early user interface designs. Instead, early usability evaluation can
be based on prototypes of the final systems that can be developed
much faster and much more cheaply, and which can thus be
changed many times until a better understanding of the user inter-
face design has been achieved.

In traditional models of software engineering most of the develop-
ment time is devoted to the refinement of various intermediate

93

] Usability Engineering

Different features

i Scenario Horizontal prototype

-
e
l Q g
| \ 5
: S
| <
]T | Vertical
‘ prototype Full system

keeps the features but eliminates depth of functionality, and vertical proto-

’ Figure 9 The two dimensions of prototyping: Horizontal prototyping
typing gives full functionality for a few features.

‘ work products, and executable programs are produced at the last
i possible moment. A problem with this “waterfall” approach is that
there will then be no user interface to test with real users until this
| last possible moment, since the “intermediate work products” do
| not explicitly separate out the user interface in a prototype with
which users can interact. Experience also shows that it is not
possible to involve the users in the design process by showing
Ii them abstract specifications documents, since they will not under-
[’ stand them nearly as well as concrete prototypes.

The entire idea behind prototyping is to save on the time and cost
I to develop something that can be tested with real users. These
savings can only be achieved by somehow reducing the prototype
| compared with the full system: either cutting down on the number
of features in the prototype or reducing the level of functionality of
the features such that they seem to work but do not actually do
anything. These two dimensions are illustrated in Figure 9.

94

The Usability Engineering Lifecycle

Cutting down on the number of features is called vertical proto-
typing since the result is a narrow system that does include in-
depth functionality, but only for a few selected features. A vertical
prototype can thus only test a limited part of the full system, but it
will be tested in depth under realistic circumstances with real user
tasks. For example, for a test of a videotex system, in-depth func-
tionality would mean that a user would actually access a database
with some real data from the information providers.

Reducing the level of functionality is called horizontal prototyping
since the result is a surface layer that includes the entire user inter-
face to a full-featured system but with no underlying functionality.
A horizontal prototype is a simulation [Life et al. 1990] of the inter-
face where no real work can be performed. In the videotex
example, this would mean that users should be able to execute all
navigation and search commands but without retrieving any real
information as a result of these commands [Nielsen 1987a]. Hori-
zontal prototyping makes it possible to test the entire user inter-
face, even though the test is of course somewhat less realistic, since
users cannot perform any real tasks on a system with no function-
ality. The main advantages of horizontal prototypes are that they
can often be implemented fast with the use of various prototyping
and screen design tools and that they can be used to assess how
well the entire interface “hangs together” and feels as a whole.

Finally, one can reduce both the number of features and the level of
functionality to arrive at a scenario that is only able to simulate the
user interface as long as the test user follows a previously planned
path. Scenarios are extremely easy and cheap to build, while at the
same time not being particularly realistic. Scenarios are discussed
further on page 99.

In addition to reducing the proportion of the system that is imple-
mented, prototypes can be produced faster by:

* Placing less emphasis on the efficiency of the implementation.
For example, it will not matter how much disk space the proto-
type uses since it will only be used for a short time. Similarly, test
users may be able to cope with slow response times that would
never be acceptable in the final product. Note, however, that

95

|
|
|
|

Usability Engineering

response times are an important aspect of usability and that test
users may get very frustrated and make errors if the prototype is
too slow. Of course, efficiency measures of the users’ perfor-
mance will be invalid if the prototype slows them down too
much, so inefficient prototypes are better suited for early evalua-
tion of interface concepts than for measurement studies.

¢ Accepting less reliable or poorer quality code. Even though bugs
and crashes do distract users during testing, they can often be
compensated for by the experimenter.

e Using simplified algorithms that cannot handle all the special
cases (such as leap years) that normally require a disproportion-
ately large programming effort to get right.

¢ Using a human expert operating behind the scenes to take over
certain computer operations that would be too difficult to
program. This approach is often referred to as the Wizard of Oz
technique after the “pay no attention to that man behind the
curtain” scene in this story. Basically, the user interacts normally
with the computer, but the user’s input is not relayed directly to
the program. Instead, the input is transmitted to the “wizard”
who, using another computer, transforms the user’s input into
an appropriate format. A famous early Wizard of Oz study was
the “listening typewriter” [Gould et al. 1983] simulation of a
speech recognition interface where the user’s spoken input was
typed into a word processor by a human typist located in
another room.” When setting up a Wizard of Oz simulation,
experience with previously implemented systems is helpful in
order to place realistic bounds on the Wizard’s “abilities”
[Maulsby et al. 1993].

e Using a different computer system than the eventual target plat-
form. Often, one will have a computer available that is faster or
otherwise more advanced than the final system and which can
therefore support more flexible prototyping tools and require
less programming tricks to achieve the necessary response times.

* Using low-fidelity media [Virzi 1989] that are not as elaborate as
the final interface but still represent the essential nature of the

7. Dye et al. [1990] survey additional simulations of listening typewriters.

96

The Usability Engineering Lifecycle

interaction. For example, a prototype hypermedia system could
use scanned still images instead of live video for illustrations.

* Using fake data and other content. For example, a prototype of a
hypermedia system that will include heavy use of video could
use existing video material, even though it did not exactly match
the topic of the text, in order to get a feel for the interaction tech-
niques needed to deal with live images. A similar technique is
used in the advertising industry, where so-called ripomatics are
used as rudimentary television commercials with existing shots
from earlier commercials to demonstrate concepts to clients
before they commit to pay for the shooting of new footage.

* Using paper mock-ups instead of a running computer system.
Such mock-ups are usually based on printouts of screen designs,
dialog boxes, pop-up menus, etc., that have been drawn up in
some standard graphics or desktop publishing package. They are
made into functioning prototypes by having a human “play
computer” and find the next screen or dialog element from a big
pile of paper whenever the user indicates some action. This
human needs to be an expert in the way the program is intended
to work since it is otherwise difficult to keep track of the state of
the simulated computer system and find the appropriate piece of
paper to respond to the user’s stated input.

Paper mock-ups have the further advantage that they can be
shown to larger groups on overhead projectors [Rowley and
Rhoades 1992] and used in conditions where computers may not
be available, such as customer conference rooms. Portable
computers with screen projection attachments confer some of the
same advantages to computerized prototypes, but also increase
the risk of something going wrong.

* Relying on a completely imaginary prototype where the experi-
menter describes a possible interface to the user orally, posing a
series of “what if (the interface did this or that) . . .” questions as
the user steps though an example task. This verbal prototyping
technique has been called “forward scenario simulation” [Cord-
ingley 1989] and is more akin to interviews or brainstorming
than a true prototyping technique.

Obviously, several prototyping techniques can be combined either
in one, especially cheap prototype, or as alternative prototypes,

97

Usability Engineering

each exploring one aspect of the usability of the total system. For
example, one could create one prototype hypermedia interface
with scanned still images of the actual topic material, and another
prototype interface with “ripomatic” live video from an existing
system on another topic. The still-image prototype could then be
used to test the integration of text and images to support learning
the domain of the hyperdocument, and the live-video prototype
could be used to test interaction mechanisms for controlling the
time-variant media, such as super—fast-forwarding as a way to scan
a long video clip in a short amount of time. Of course, one would
ultimately have to produce a single, integrated prototype with
domain-specific live video to test the integration of text and video,
but that more expensive version could be put off while the cheaper
prototypes were used to clean up the interface and help decide the
types of new video material one would need to film.

Special prototyping tools [Hix and Schulman 1991] and languages
are a major means of fast implementation of user interface proto-
types. In addition to specialized prototyping tools, fast prototyping
is often achieved by the use of hypertext systems [Hartson and
Smith 1991; Nielsen 1989a; Young et al. 1990], courseware
authoring tools, database systems [Lee et al. 1990], so-called fourth-
generation application generators, specialized screen generator
tools, and the features some spreadsheets have for constructing
general user interfaces as a front-end to an underlying spreadsheet.

Prototypes may sometimes be used for a special form of participa-
tory design called interactive prototyping, where the prototype is
developed and modified on the fly as a test user comments on its
weak spots. If a crack programmer is available and a flexible inter-
face construction system is used, such interactive prototyping can
be a powerful experience for the users who get the immediate grat-
ification of seeing their design suggestions implemented. Also, the
design may proceed rapidly as multiple variations are tested and
modified in a single test session.

Unfortunately, reality is often less ideal, since even a true wizard
programmer will often make mistakes when hacking code in real
time. Programming errors and system difficulties will sidetrack the

98

The Usability Engineering Lifecycle

test session from the focus on the user’s task and the interface, and
the user may feel severely alienated by the many extra windows
popping up for split-second editing by the programmer. These
problems may be avoided by using paper mock-ups for interactive
prototyping sessions and allow the users to modify the paper
designs. One such technique is PICTIVE (Plastic Interface for
Collaborative Technology Initiatives through Video Exploration)
[Muller 1991, 1992] where designs are put together as multiple
layers of sticky notes and overlays that can be changed by simple
colored pens. A final PICTIVE design may be somewhat of a mess
of loose paper and plastic, which is why the two last characters of
the acronym imply using a videotape of the design session to
convey the result to the implementers. PICTIVE is especially suited
for prototyping activities carried out as part of a participatory
design process since the low-tech nature of the materials make
them equally accessible to users and to developers.

A prototype is a form of design specification and is often used as a
major way of communicating the final design to developers. Unfor-
tunately, the prototype can be overspecified in some aspects that are
not really intended to be part of the design. Whenever something is
made concrete, there is a need to instantiate a multitude of repre-
sentational details that might not have been explicitly designed by
anybody. For example, a screen design will have to use certain
colors and fonts, even though the designer’s focus may have been
on the wording and positioning of the dialogue elements. Basically,
one needs to be aware that not every aspect of the prototype
should be replicated in the final system, and the designers should
inform developers about which aspects of the prototype are inten-
tional and which are arbitrary.

Scenarios

Scenarios are the ultimate minimalist prototype in that they
describe a single interaction session without any flexibility for the
user. As such, they combine the limitations of both horizontal
prototypes (users cannot interact with real data) and vertical proto-
types (users cannot move freely through the system).

99

Usability Engineering

The term “scenario” has seen widespread use in the user interface
community with slightly different meanings [Campbell 1992; Karat
and Karat 1992]. Carroll and Rosson [1990] give examples of the
term in at least seven different meanings. Therefore, I will try to
clarify the terminology by the following definition [Nielsen 1990d]:

A scenario is an encapsulated description of

* an individual user

* using a specific set of computer facilities
il * to achieve a specific outcome

 under specified circumstances

* over a certain time interval (this in contrast to simple static collec-
tions of screens and menus: The scenario explicitly includes a
time dimension of what happens when).

' As such, scenarios have two main uses: First, scenarios can be used
il during the design of a user interface as a way of expressing and
1 understanding the way users eventually will interact with the
It future system. Second, scenarios can be used during early evalua-
\ tion of a user interface design to get user feedback without the
! expense of constructing a running prototype.

3 For example, a scenario for the use of an automated teller machine
(ATM) might read as follows for used during the design phase:

1. The user approaches the machine and inserts a bank card. No
matter what side is up, the machine reads the card correctly.

2. The machine asks the user to input a four-digit personal identi-
i fication number, and the user does so using the numeric
' keypad.

3. The machine presents the user with a menu of four options,
“withdraw $100,” “withdraw other amounts,” “make a
deposit,” and “other transactions.” There is a button
next to each of the menu options.

The user presses the button for “withdraw $100,” and the
machine pays out that amount, deducting it from the user’s
account. If the user has more than one account tied into the
bank card, the amount is deducted from the account with the
largest balance.

The Usability Engineering Lifecycle

5. The machine returns the bank card to the user.

This scenario immediately raises some questions for the design of
the user interface to this machine. For example, is $100 the best
amount to have available as a single-button choice?® Is it even a
good idea to have this accelerated option for a pay-out at a single
push of a button, or should the user always be asked to specify the
account in case there are several possibilities? And so on. In
general, scenario descriptions are good tools in early design stages
because they can be generated and edited before the user interface
has been fully designed [Carroll and Rosson 1992]. Scenarios
describing possible uses of envisioned future systems are also
helpful for early participatory design exercises, since users will
find it easier to relate to the task-oriented nature of the scenarios
than to the abstract, and often function-oriented, nature of systems
specifications.

Scenarios can also be used for user testing if they are developed
with slightly more detail than a pure narrative. In the previous
example, it would be possible to make mock-up drawings of the
ATM screens with the buttons and menus, and present them to
users, asking them to “use” the screens to withdraw money, and
asking them what they would think should happen in each step.

Elaborate scenarios are sometimes produced in the form of “day-
in-the-life” videotapes [Vertelney 1989]. These videos show enact-
ments of “users” (actors) interacting with a simulated system in the
course of their daily activities. Because the interactions are shown
on video, the simulated system can be produced using all kinds of
special effects and can be made to look quite sophisticated
[Dubberly and Mitsch 1987]. These videos can then be shown to
users; for example, to prompt discussions in focus groups.

8. One way of empirically answering this question would be to analyze the
bank’s database of previous ATM withdrawals. If it turned out that most with-
drawals were for the amount of $50, then the $100 should be changed to $50.

101

Usability Engineering

4.9 Interface Evaluation

The most basic advice with respect to interface evaluation is simply
to do it, and especially to conduct some user testing. The benefits of
employing some reasonable usability engineering methods to eval-
uate a user interface rather than releasing it without evaluation are
much larger than the incremental benefits of using exactly the right
methods for a given project.

Whitefield et al. [1991] provide a classification of evaluation
methods on two dimensions: whether or not real users are
involved and whether or not the interface has actually been imple-
mented. One would certainly expect the best results from testing
real users and real systems, but doing so may not always be
feasible. The prototyping methods described above provide a
means of performing evaluations early enough to influence a
project while it can still change direction, and the heuristic evalua-
tion method discussed in Chapter 5 allows you to assess usability
without the expense of a user test.

User testing is covered in more detail in Chapter 6.

Severity Ratings

From whatever evaluation methods are used, a major result will be
a list of the usability problems in the interface as well as hints for
features to support successful user strategies. It is normally not
feasible to solve all the problems, so one will need to prioritize
them. Priorities are best based on experimental data about the
impact of the problems on user performance (e.g.,, how many
people will experience the problem and how much time each of
them will waste because of it), but sometimes it is necessary to rely
on intuitions only.

Severity ratings are usually gathered by sending a group of
usability specialists a list of the usability problems discovered in
the interface and asking them to rate the severity of each problem.
Sometimes, the severity raters are given access to use the system
while making their estimates, and sometimes they are asked to
judge the problems based only on written description. Note that

102

The Usability Engineering Lifecycle

the latter approach is possible because the severity raters are
supposed to be usability specialists. They should therefore be able
to visualize the interface based on the written description (and
possibly some screen dumps) in a way that regular users would
normally not be able to do. Typically, evaluators need only spend
about 30 minutes to provide their severity ratings, though more
time may of course be needed if the list of usability problems is
extremely long. It is important to note that each usability specialist
should provide his or her individual severity ratings indepen-
dently of the other evaluators.

Unfortunately, severity ratings derived purely by subjective judg-
ment from usability specialists are not very reliable. People have
too different opinions about usability. I therefore recommend that
you never rely on severity ratings from any single usability
specialist (especially not yourself!). Instead, collect ratings from
several independent evaluators. Even with just three to four evalu-
ators, the mean of their ratings is much better than the ratings from
any single one of them. In one case study, the probability for
getting within +0.5 rating unit from the true severity of a problem
on a 5-point rating scale was only 55% with ratings from a single
usability specialist, but 95% with the mean of ratings from 4 inde-
pendent specialists [Nielsen 1994b].

Two common approaches to severity ratings are either to have a
single scale or to use a combination of several orthogonal scales. A
single rating scale for the severity of usability problems might be

0 = this is not a usability problem at all

1 = cosmetic problem only—need not be fixed unless extra time
is available on project

2 = minor usability problem—fixing this should be given low
priority

3 = major usability problem—important to fix, so should be
given high priority

4 = usability catastrophe—imperative to fix this before product
can be released

103

Usability Engineering

Proportion of users experiencing the problem

Few Many

Low severity Medium severity

Small

experience it

Medium severity High severity

Impact of problem
on the users who

Large

Table 8 Table to estimate the severity of usability problems based on the
frequency with which the problem is encountered by users and the impact
of the problems on those users who do encounter it.

Alternatively, severity can be judged as a combination of the two
most important dimensions of a usability problem: how many
users can be expected to have the problem, and the extent to which
those users who do have the problem are hurt by it. A simple
example of such a rating scheme is given in Table 8. Of course, both
dimensions in the table can be estimated at a finer resolution, using
more categories than the two shown here for each dimension. Both
the proportion of users experiencing a problem and the impact of
the problem can be measured directly in user testing. A fairly large
number of test users would be needed to measure reliably the
frequency and impact of rare usability problems, but from a prac-
tical perspective, these problems are less important than more
commonly occurring usability problems, so it is normally accept-
able to have lower measurement quality for rare problems.

If no user test data is available, the frequency and impact of each
problem can be estimated heuristically by usability specialists, but
such estimates are probably best when made on the basis of at least
a small number of user observations.

One can add a further severity dimension by judging whether a
given usability problem will be a problem only the first time it is
encountered or whether it will persistently bother users. For
example, consider a set of pull-down menus where all the menus
are indicated by single words in the menubar except for a single

104

The Usability Engineering Lifecycle

menu that is indicated by a small icon (as, for example, the Apple
menu on the Macintosh). Novice users of such systems can often be
observed not even trying to pull down this last menu, simply
because they do not realize that the icon is a menu heading. As
soon as somebody shows the users that there is a menu under the
icon (or if they read the manual), they immediately learn to over-
come this small inconsistency and have no problems finding the
last menu in future use of the system. This problem is thus not a
persistent usability problem and would normally be considered
less severe than a problem that also reduced the usability of the
system for experienced users.

4.10 Iterative Design

Based on the usability problems and opportunities disclosed by the
empirical testing, one can produce a new version of the interface.
Some testing methods such as thinking aloud provide sufficient
insight into the nature of the problems to suggest specific changes
to the interface in many cases. Log files of user interaction
sequences often help by showing where the user paused or other-
wise wasted time, and what errors were encountered most
frequently. It often also helps if one is able to understand the
underlying cause of the usability problem by relating it to estab-
lished usability principles such as those discussed in Chapter 5, or
by using a formal classification scheme for different categories of
problems [Booth 1990]. In other cases alternative potential solu-
tions need to be designed based solely on knowledge of usability
guidelines, and it may be necessary to test several possible solu-
tions before making a decision. Familiarity with the design options,
insight gained from watching users, creativity, and luck are all
needed at this point.

Houde [1992] presents an interesting case study of iterative design
of a graphical user interface for the manipulation of three-dimen-
sional objects on a two-dimensional computer screen. One of the
issues that was addressed in the iterative design was the design of
cursors and handles for movement and rotation. The initial design

105

Usability Engineering

used a single picture of a grasping hand, but users were soon seen
to be disturbed by having the cursor seem to grasp empty air next
to the object they wanted to move rather than the object itself. The
second iteration replaced the static image of the cursor with an
active area on each movable object, such that a customized picture
of a hand grasping the object in an appropriate manner for the
object would appear when the user clicked in the active area.
Unfortunately, the concept of an active area frustrated users who
had to click all over the objects to find the spot where the picture of
the grabbing hand would appear. The third iteration therefore
introduced multiple customized hands that would appear on an
object when it was selected. Users could then move these hands as
handles to manipulate the object. Again, user testing indicated
problems, this time because the way people would want to use
hands to move objects was very individual and would depend on
the shape of the object (for example, lifting a lamp would be done
differently than lifting a chair). Finally, the fourth, successful, solu-
tion was to surround each selected object by a wire-frame
bounding box and attach the hands to the box. Because of the
regular shape of the box, users were less confused about how to
use the hands to move it.

As shown by this example, some of the changes made to solve
certain usability problems may fail to solve the problems. A revised
design may even introduce new usability problems [Bailey 1993].
This is yet another reason for combining iterative design and eval-
uation. In fact, it is quite common for a redesign to focus on
improving one of the usability parameters (for example, reducing
the user’s error rate), only to find that some of the changes have
adversely impacted other usability parameters (for example, trans-
action speed).

In some cases, solving a problem may make the interface worse for
those users who do not experience the problem. Then a trade-off
analysis is necessary as to whether to keep or change the interface,
based on a frequency analysis of how many users will have the
problem compared to how many will suffer because of the
proposed solution. The time and expense needed to fix a particular
problem is obviously also a factor in determining priorities. Often,

106

The Usability Engineering Lifecycle

usability problems can be fixed by changing the wording of a menu
item or an error message. Other design fixes may involve funda-
mental changes to the software (which is why they should be
discovered as early as possible) and will only be implemented if
they are judged to impact usability significantly.

Furthermore, it is likely that additional usability problems appear
in repeated tests after the most blatant problems have been
corrected. There is no need to test initial designs comprehensively
since they will be changed anyway. The user interface should be
changed and retested as soon as a usability problem has been
detected and understood, so that those remaining problems that
have been masked by the initial glaring problems can be found.

I surveyed four projects that had used iterative design and had
tested at least three user interface versions [Nielsen 1993b]. The
median improvement in usability per iteration was 38%, though
with extremely high variability. In fact, in 5 of the 12 iterations
studied, there was at least one usability metric that had gotten
worse rather than better. This result certainly indicates the need to
keep iterating past such negative results and to plan for at least
three versions, since version two may not be any good. Also, the
study showed that considerable additional improvements could be
achieved after the first iteration, again indicating the benefits of
planning for multiple iterations.

During the iterative design process it may not be feasible to test
each successive version with actual users. The iterations can be
considered a good way to evaluate design ideas simply by trying
them out in a concrete design. The design can then be subjected to
heuristic analysis and shown to usability experts and consultants
or discussed with expert users (or teachers in the case of learning
systems). One should not “waste users” by performing elaborate
tests of every single design idea, since test subjects are normally
hard to come by and should therefore be conserved for the testing
of major iterations. Also, users get “worn out” as appropriate test
subjects as they get more experience with the system and stop
being representative of novice users seeing the design for the first

107

Usability Engineering

time. Users who have been involved in participatory design are
especially inappropriate as test subjects, since they will be biased.

Capture the Design Rationale

The rationale for the various user interface design decisions can be
made explicit and recorded for later reference [Moran and Carroll
1994]. Having access to an audit trail through the design rationale
is important during iterative development and during develop-
ment of any future releases of the product. Since changes to the
interface will often have to be made, it is helpful to know the
reasons underlying the original design so that important usability
principles are not sacrificed to attain a minor objective. Similarly,
the design rationale can help technical writers develop documenta-
tion and translators develop foreign versions. Furthermore, the
design rationale can help in maintaining user interface consistency
across successive product versions.

Design rationales can be captured either in traditional written form
or in a hypertext [Nielsen 1990a] structure such as the gIBIS system
[Conklin and Begeman 1988; Conklin and Yakemovic 1991] with
links between alternative design options and the supporting
evidence or arguments leading to the choice of one of them. Figure
10 shows an example of a design rationale in hypertext, using a
QOC-notation (questions, options, and criteria) similar to that
suggested by MacLean et al. [1989, 1991a and b]. Future reposito-
ries for design rationales may even include video records of design
meetings and selected user tests [Hodges et al. 1989].

During the development process, a design rationale can also be
captured by a low-tech solution on the walls of the design team’s
meeting room. Karat and Bennett [1990, 1991b] used such a tech-
nique by taping notepaper on the walls, using different walls for
different perspectives on the design. One wall was used for design
sketches, one for design constraints, one for scenarios (cf. page 99),
and one for open questions. The scenarios are interaction examples
illustrating the flow of specific user actions needed for some result,
concentrating on what the user will see, what the user must know,
and what the user can do [Karat and Bennett 1991a]. Since design

108

The Usability Engineering Lifecycle

\9 - Option: Criterion: Question:
Permanently Takes up How to
anipie scrobn visible palette ———— screen real —____appropriate
of colors estate available
screen
space?
Question: Option: Criterion:
How to P%ﬁ-up rr|1enu Many colors can
select the Ll be selected
colors? wheel
Criterion:
Option:

High precision in

User types in color specification

percent red,
green, and blue
in a dialog box User test:
Very few users can spec-
ify color blends correctly

Figure 10 A partial example of a design rationale for a small part of an
interface design for a hypothetical color paint program. The full design
rationale might include more sample screens and links to additional
design questions like the “How to appropriate...” question hinted at
here. The lines might denote hypertext links in an online representation,
or they could be supported by simple proximity in a paper document.

issues are often difficult to understand fully in the abstract, the
concreteness of the scenarios adds value to a design rationale.

4.11 Follow-Up Studies of Installed
Systems

The main objective of usability work after the release of a product
is to gather usability data for the next version and for new, future
products: In the same way that existing and competing products
were the best prototypes for the product in the initial competitive

109

Usability Engineering

analysis phase, a newly released product can be viewed as a proto-
type of future products. Studies of the use of the product in the
field assess how real users use the interface for naturally occurring
tasks in their real-world working environment and can therefore
provide much insight that would not be easily available from labo-
ratory studies.

Sometimes, field feedback can be gathered as part of standard
marketing studies on an ongoing basis. As an example, an Austra-
lian telephone company collected customer satisfaction data on a
routine basis and found that overall satisfaction with the billing
service had gone up from 67% to 84% after the introduction of a
redesigned bill printout format developed according to usability
engineering principles [Sless 1991]. If the trend in customer satis-
faction had been the opposite, there would have been reason to
doubt the true usability of the new bill outside the laboratory, but
the customer satisfaction survey confirmed the laboratory results.

Alternatively, one may have to conduct specific studies to gather
follow-up information about the use of released products. Basi-
cally, the same methods can be used for this kind of field study as
for other field studies and task analysis, especially including inter-
views, questionnaires, and observational studies. Furthermore,
since follow-up studies are addressing the usability of an existing
system, logging data from instrumented versions of the software
becomes especially valuable for its ability to indicate how the soft-
ware is being used across a variety of tasks.

In addition to field studies where the development organization
actively seeks out the users, information can also be gained from
the more passive technique of analyzing user complaints, modifi-
cation requests, and calls to help lines (see Section 7.5, User Feed-
back, on page 221). Even when a user complaint at first sight might
seem to indicate a programming error (for example, “data lost”), it
can sometimes have its real roots in a usability problem, causing
users to operate the system in dangerous or erroneous ways.
Defect-tracking procedures are already in place in many software
organizations and may only need small changes to be useful for
usability engineering purposes [Rideout 1991]. Furthermore, infor-

110

The Usability Engineering Lifecycle

mation about common learnability problems can be gathered from
instructors who teach courses in the use of the system.

Finally, economic data on the impact of the system on the quality
and cost of the users” work product and work life are very impor-
tant and can be gathered through surveys, supervisors” opinions,
and statistics for absenteeism, etc. These data should be compared
with similar data collected before the introduction of the system.

4.12 Meta-Methods

To ensure the successful application of the usability engineering
methods discussed here, it is important to supplement each of
them with the following meta-methods (methods that apply to
methods):

* Write down an explicit plan for what to do when using the
method. For example, a plan for empirical user testing would
include information about how many users to test, what kind of
users to test (and how to get hold of them), what test tasks these
users would be asked to perform (which itself should be based
on task analysis and user observation), and a time schedule for
the studies.

* Subject this plan to an independent review by a person who is
not otherwise on your team and who can critique it from a fresh
perspective. This person should preferably be experienced with
respect to usability engineering.

* Perform a pilot activity by investing about 10-15% of the total
resources budgeted for the use of the method. Then revise your
plan for the remaining 85-90% to fix the difficulties that invari-
ably will be found during the pilot activity. For example, with
empirical user testing, the original test instructions are often
misinterpreted by the users; you want the main test to focus on
the usability of your system and not on your ability to write
readable test instructions. See page 174 for more information
about pilot tests.

Furthermore, as early as possible in the project, an overall usability
plan should be established listing the usability activities to be

111

Usability Engineering

performed throughout the lifecycle. Not all projects can afford to
use all the methods, and the exact methods to use will depend on
the characteristics of the project.

These meta-methods may involve a little extra work up front, but
they save work in the long term and ensure that your efforts are on
the right track to increase usability, thereby reducing the risk of
truly wasting the main effort.

4.13 Prioritizing Usability Activities

It is not always possible to perform all the recommended usability
activities in any given project. My own approach to budget
constraints or time pressures is outlined in Section 1.4, Discount
Usability Engineering (page 16), and stresses

* visit to user sites (see page 73)

e prototyping through scenarios (see page 99)
¢ simplified thinking aloud (see page 195)

* heuristic evaluation (see page 155)

To get additional prioritizing advice, I surveyed 13 usability engi-
neering specialists and asked them to rate 33 different usability
methods for their importance to the usability of the final interface
[Nielsen 1992b]. The ratings were on a scale from one (no impact
on usability) to five (absolutely essential for usability).

The top six methods according to rated impact on usability were
1-2 Iterative design and task analysis of the user’s current task.
Both rated 4.7.
3 Empirical tests with real users. Rated 4.5.
4 Participatory design. Rated 4.4.

5-6 Visit to customer location before start of design and field
study to find out how system is actually used after installa-
tion. Both rated 4.3.

The usability specialists were also asked to what extent they had
actually used the 33 methods on their most recent project. There

112

The Usability Engineering Lifecycle

was a fairly high correlation between the ratings of the usability
impact of the various methods and the extent to which the
methods were actually being used in projects (r = 0.71). A regres-
sion analysis (indicating the match between the scores on the two
scales) found that the following two usability activities seemed to
be significantly underused in real projects:

* Coordination of the total interface (not just screens but also
manuals, training, etc.) was given an impact rating of 4.1. From
this rating, the regression analysis would “predict” 64% use,
even though total consistency currently was part of only 38% of
the projects.

* Field studies at customer locations after installation of the
system were given an impact rating of 4.3. From this rating, the
regression analysis would “predict” 69% use, even though post-
installation studies currently were performed in only 46% of the
projects.

4.14 Be Prepared

Even though it is preferable to use usability engineering methods
throughout the software lifecycle, practical considerations some-
times dictate the need for emergency human factors to help
projects that have gone astray or are especially pressed for time. In
these cases, better results may be expected if the usability special-
ists have prepared for such eventualities in advance [Mulligan et al.
1991]. The following precautions can be taken during any less
hectic periods that may be available between urgent projects:

* Get a good user interface prototyping tool and acquire profi-
ciency in using it. If you develop interfaces mostly for a certain
platform (say, phone-based interfaces, or hypermedia with lots
of color video), you may even consider developing a specialized
prototyping tool tailored to your special needs, but there are also
several good general tools available. In any case, learning to use
such tools and all their advanced features can take several weeks
or even months [Nielsen and Richards 1989; Nielsen et al. 1991],
which will not be available when the emergency project starts.
An expert user can tweak a prototyping tool and throw together

113

Usability Engineering

initial interfaces for user testing in a very short time, and this
may be the only way you will ever get time to test anything.

® Learn appropriate techniques for usability inspection and
heuristic evaluation (see page 155), and get familiar with the
relevant interface standards and guidelines. Use of these
methods can improve interface designs in just a few hours, but
they may take almost two weeks to learn for some methods
[Jeffries et al. 1991].

¢ Build up an understanding of the types of users, tasks, applica-
tions, and computer platforms that are typical for your organiza-
tion. Generalizing the specific experience from previous user
tests, field visits, and studies of installed systems will help you
make more informed judgments about the new interface.

* Set up procedures that will allow you to recruit test users easily
when they are needed. For example, cultivate relationships with
major nearby customer sites and local colleges, set up contracts
with temporary employment agencies, or build a database of
interested volunteers (retired staff can often form a valuable
source of volunteers with substantial domain knowledge). One
of the major impediments to conducting user testing when it is
needed is the time it may take to find appropriate users if one is
not prepared.

¢ Find and train a usability champion in each project group that
does not have its own full-time usability specialist [Mrazek and
Rafeld 1992]. Such usability champions should know enough
about usability to handle the everyday usability needs of their
projects, including activities like heuristic evaluation and quick
user testing of design ideas. Since the usability champions are
not full-time usability specialists, they will function best if they
have access to usability specialists who can keep them up-to-date
with developments in the user interface field and take care of
more specialized jobs like the building of a usability laboratory
or the finding and scheduling of test users.

* Read more usability books and articles (see the bibliography on
page 283 for ideas for further reading) and attend conferences
(see page 284). Also try out a lot of different systems with
different kinds of interfaces to get experience with alternative
interaction styles: Many good design ideas come from knowing
how analogous design problems were solved in other interfaces.

114

Chapter 5 Usabllli'y Heuristics

This chapter presents some basic characteristics of usable inter-
faces. The principles are fairly broad and apply to practically any
type of user interface, including both character-based and graph-
ical interfaces [Nielsen 1990e]. The principles are summarized in
Table 2 (page 20). After detailed sections for each of the ten basic
heuristics, Section 5.11 (page 155) concludes the chapter with infor-
mation on how to use usability heuristics as a basis for a systematic
inspection of a user interface to find its usability problems (the
heuristic evaluation method).

5.1 Simple and Natural Dialogue

User interfaces should be simplified as much as possible, since
every additional feature or item of information on a screen is one
more thing to learn, one more thing to possibly misunderstand,
and one more thing to search through when looking for the thing
you want. Furthermore, interfaces should match the users’ task in
as natural a way as possible, such that the mapping between
computer concepts and user concepts becomes as simple as
possible and the users’ navigation through the interface is mini-
mized.

115

Usability Engineering

MmmMMM 'mm mm m mmmmmm
B Mm mmmmmm mmmm
= MmmMMM’mm mmm m mm|_Mmm Mmm], Mmm
Mmmm Mmmmm mm-mm, mmm mm mm mmm
= mmm=-mmm mmmm MMMmMmM m MM MMMm mmmm.
) Mmmm mm mmmm, mm mmm
mmmm m m m mm
— mmmm mmm. Mm mmm m mmm mmmm mmmmmn
MMM MMM MMM MMMMM M, MMM MM m mmmnm m
2 mmm mm m mm MMM m MMM MM mmmmm :

(vom

A Mmmm mm mm m mm MmMmm Mmm mm mmmmm

MMM M MMmMm mm mmmm mm mm mmmm mmmm

= mm Mmm m mmm m
mmm MM m mm MMmMm m mm mmmm mmm mm mnmm

2 m mmm mmm mm mm mm mm mmm. Mm mm mmm

3 MM, MMmMmM mm mmm mMmmm mmmm mm mmm mmm

| MM MM mmm m mmm mmm m mmm mmmm

- ™M m mm mmm mmm m mmm mmm MM mmm mm mm
mmmm mm mmm mmZm mm mm mm/Zmm mmmm, mm

A mm mmmm (mm mmm mmmm) mm mm mm mmm

7Y mmm mMm mmmmmm.

Figure 11 Mumble screen layout for a hypertext system. The actual
system is described in [Nielsen 1990a, 1990i]. The screen could be made to
abstract even further from the information content in the full system by
replacing the icons with generic shapes.

The ideal is to present exactly the information the user needs—and
no more—at exactly the time and place where it is needed. Infor-
mation that will be used together should be displayed close
together, and at a minimum on the same screen. Also, both infor-
mation objects and operations should be accessed in a sequence
that matches the way users will most effectively and productively
do things. Sometimes such sequences are enforced by the user
interface, but it is normally better to allow the user to control the
dialogue as much as possible such that the sequence can be
adjusted by the individual user to suit that user’s task and prefer-
ences. Even so, the system may ease the user’s understanding of
the dialogue by indicating a suggested or preferred sequence, such
as the sequence implied by the listing of fields in a dialog box from
top to bottom.

116

Usability Heuristics

Graphic Design and Color

Good graphic design is an important element in achieving a simple
and natural dialogue for modern computer systems with graphical
user interfaces [Marcus 1992]. In addition to getting help from a
graphics designer, there are several simple considerations that may
lead to simpler dialogues. By prototyping screen layouts using
“mumble screens” like that shown in Figure 11 where all text has
been replaced with the letter “m,” one can abstract away from the
detailed information content in the system and focus on layout
issues.!

Screen layouts should use the gestalt rules for human perception
[Rock and Palmer 1990] to increase the users’ understanding of
relationships between the dialogue elements. These rules say that
things are seen as belonging together, as a group, or as a unit, if
they are close together, are enclosed by lines or boxes, move or
change together, or look alike with respect to shape, color, size, or
typography. For example, in Figure 12, most people will perceive
two major groups of objects due to the closeness of the objects
within the groups compared with the distance between the groups.
Then, most people would think that the left set of objects contained
two sets of objects that were even more closely related, due to the
enclosure of the six objects in the upper right corner and the high-
lighting of the four objects in the lower left corner. Also, the right
set of objects will be perceived as containing three groups, and the
middle one will be seen as standing out from the background since
it is smaller.

These principles of graphic structure should be used to help the
user understand the structure of the interface. For example, menus
can use a dividing line or color coding [McDonald et al. 1988] to
split options into related groups, each of which will be easier to
understand because each option will be seen in a relevant context.

1. Mumble text has also been used as a task analysis technique for finding out
whether users gain information simply from the way information is presented
on a form without reading the detailed data [Nygren et al. 1992]. If they do,
then one should design similar capabilities for users in a computerized infor-
mation environment.

117

Usability Engineering

Figure 12 Example of objects structured according to the gestalt princi-
ples of closeness, closure, and similarity.

Similarly, dialog boxes can group related features and enclose them
in boxes or separate them by lines or white space. Also, since users
will perceive structure based on these principles, care should be
taken not to separate out unrelated objects in ways that make them
seem as belonging together. For example, consider a bank state-
ment with the following layout:

Balance $1,000.00
$2,000.00

What is the balance? One or two thousand dollars? The closeness
rule will make many people perceive the label Balance as being
matched with the number $2, 000, even though it may have been
intended as a label for the line containing the number $1, 000.

Principles of graphic design can also help users prioritize their
attention to a screen by making the most important dialogue
elements stand out. As shown by the right part of Figure 12, a small
delineated area will stand out from the background, and one can
also make objects stand out by highlighting them in various ways,
including the use of bolder colors or typefaces, and by making
them larger. Also, information that is presented “first,” given the
usual reading direction (that is, at the top and to the left in many
cultures) normally gets more attention. It is even possible to attract
the users’ attention by using blinking objects, but blinking is so
distracting and annoying that it should only be used in extreme

118

Usability Heuristics

cases. On alphanumeric terminals, UPPERCASE TEXT CAN ALSO
BE USED TO GET THE USERS’ ATTENTION, but upper case
should be used sparingly as it is about 10% slower to read than
mixed-case text.

With respect to the use of color in screen designs [Rice 1991; Travis
1991], the three most important guidelines are

* Don’t over-do it. An interface should not look like an angry fruit
salad of wildly contrasting, highly saturated colors. It is better to
limit the design to a small number of consistently applied colors.
Color-coding should be limited to no more than 5 to 7 different
colors since it is difficult to remember and distinguish larger
numbers, even though highly trained users can cope with about
11 colors [Durrett and Trezona 1982]. Also, light grays and muted
pastel colors are often better as background colors than
screaming colors are.

* Make sure that the interface can be used without the colors.
Remember that many people (about 8% of males) are colorblind,
so any color-coding of information should be supplemented by
redundant cues that make it possible to interpret the screens
even without being able to differentiate the colors. For example,
icons that are about to be deleted could be turned red for fast
identification by users with full color vision and they could also
be marked with an X. The best test would be to have a selection
of colorblind users try out the system, but it would be difficult to
do so comgrehensively as there are many different types of color
blindness.” In addition to having at least some colorblind test
users, one can also check how the interface looks on a mono-
chrome screen. In many cases, some users will be limited to
monochrome displays anyway.

2. Being “colorblind” normally does not mean than one cannot distinguish
any colors at all, so the expression is somewhat inaccurate. About 6% of males
and 0.4% of females are partially red-green colorblind (and so can distinguish
yellows and blues as well as some shades of green and red), 2% of males and
0.03% of females are fully red—green colorblind, and only 0.005% of males and
0.003% of females are yellow-blue or completely colorblind [Silverstein 1987].
Therefore, a test with a single colorblind user (while much better than no such
test) will not guarantee that all types of users with color-deficient vision will
be able to use the interface without problems.

119

Usability Engineering

¢ Try to use color only to categorize, differentiate, and highlight,
not to give information, especially quantitative information.

It is true that some colors and color combinations are more visible
than others [Durrett 1987], and you certainly would not want to
present JoRt help screens in light blue text on a bright yellow back-
ground.” If the most obviously horrible color combinations are
avoided, however, there is normally only a small additional benefit
to be gained from searching out the absolutely optimal choice of
colors.

Less Is More

The great rune stone in Jelling, Denmark (from the last half of the
tenth century), bears the following inscription: “King Harald ordered
these memorials raised to Gorm, his father, and Thyre, his mother; that
Harald who won for himself all Denmark and Norway and made the
Danes Christian.” The stone does seem to focus excessively on King
Harald, and the last half of the text distracts from the message
regarding King Gorm and Queen Thyre.* Similarly, adding infor-
mation and data fields to a user interface can distract the user from
the primary information.

Based on a proper task analysis, it is often possible to identify the
information that is truly important to users and which will enable
them to perform almost all of their tasks. It will then normally be
better to design a single screen with this information and relegate
less important information to auxiliary screens than to cram all the
information that might possibly be useful into a set of screens that
will require the user to switch screens for even the most simple
tasks.

Other information may not even be necessary at all. For example,
many programs follow the example of King Harald and dedicate

3. Detailed guidelines for choosing screen colors can be found in part 8 of ISO
9241 (an international standard for user interface issues). The content of this
standard is discussed further by Smith [1988].

4. Compare with the inscription on the small Jelling rune stone from the first
half of the tenth century: “King Gorm raised these memorials to his wife Thyre, the
joy of Denmark.” The runes are fewer, but the message is focused.

120

Usability Heuristics

large amounts of screen space to a display of the name of the
program, the vendor’s logo, the version number, and other similar
information. Even though this information is potentially important
and should be available for users making bug reports, it normally
only takes up screen space that could have been used for other
purposes (maybe even as white space to make for a better layout).
And of course, any piece of information is something users will
have to look at when they search the screen, and it will therefore
slow down their performance by some fraction of a second. It is
better to provide identifying information as part of a startup screen
that can be extravagantly eye-catching and serve as feedback to the
user that the appropriate program is being entered. Also, of course,
identifying information about the program, its version, and its
status should be accessible through the help system. As another
example, headers with address and message routing information
can be eliminated from displays of electronic mail and network
news [Andersen et al. 1989] to be shown only in the rare case when
a user actually needs this system-oriented information.

Extraneous information not only risks confusing the novice user,
but also slows down the expert user. For example, a study of expe-
rienced telephone company directory assistance operators showed
that finding a target that appeared in the top quarter of the screen
took 5.3 seconds when the screen was half full of information and
6.2 seconds when the screen was full of information [Springer
1987]. Saving 0.9 seconds may not seem like a lot, but for this
specific application, it was estimated to reduce call processing costs
by more than 40 million dollars per year.

The “less is more” rule does not just apply to the information
contents of screens but also to the choice of features and interaction
mechanisms for a program. A common design pitfall is to believe
that “by providing lots of options and several ways of doing
things, we can satisfy everybody.” Unfortunately, you do have to
make the hard choices yourself. Every time you add a feature to a
system, there is one more thing for users to learn (and possibly use
erroneously) and the manual gets bigger, more intimidating, and
harder to search. One study found that the users’ planning time for
formula entry was 2.9 seconds in one spreadsheet and 4.6 in

121

Usability Engineering

another [Olson and Nilsen 1987-88]. The first spreadsheet was
faster because it only provided a single method for formula entry
and therefore did not require users to think about which method to
use. In contrast, the second spreadsheet provided multiple
methods, with the result that the users were slowed down more by
having to choose between methods than the amount of time they
sometimes gained from being able to use a “faster” method for
certain formulas.

This does not mean that one should never provide alternative
interaction techniques. On the contrary, they are often a good idea
as further discussed in Section 5.7, on Shortcuts, on page 139. Alter-
natives can be provided if users can easily recognize the conditions
under which each one is optimal so that they can consistently
choose the optimal interaction technique without additional plan-
ning. For training, users should at first be taught only the single,
general method that is preferable in most common situations.
Other methods can be taught later but should not be introduced at
a stage when they will only confuse the novice user.

Sometimes, one can design an especially simple interface for
novice users and shield them from any necessary complexity that
may be needed by advanced users. Most systems doing this have
only two levels of interface complexity: novice mode and expert
mode, but in principle it might be possible to provide multiple
nested levels of increased complexity. This nested design strategy
is sometimes referred to as training wheels [Carroll 1990a].

Since novice users are often observed spending too much time
recovering from errors, the training wheels approach can give
them a system where they are blocked from even entering potential
error situations. Of course, this limits the available functionality,
but novice users probably do not need the advanced features
anyway. In one experiment, novice users were able to learn basic
use of a word processor and type a letter in 116 minutes when they
were faced with the full system and in 92 minutes when they were
given the training wheels system where actions leading to the most
common errors were not available [Carroll and Carrithers 1984].
Not only did the training wheels users get started faster, but they

122

Usability Heuristics

also liked the system better and scored slightly higher on a compre-
hension exam after the study. Even better, the initial use of the
training wheels interface did not impair users when they later
graduated to the full system. On the contrary, users who had
learned the basics of the system with the training wheels interface
learned advanced features faster than users who had been using the
full system all the time [Catrambone and Carroll 1987].

5.2 Speak the Users” Language

As a part of user-centered design, the terminology in user inter-
faces should be based on the users’ language and not on system-
oriented terms. For example, a user interface for foreign currency
transactions should not require users to specify British pounds
with a code like 317, even if it is the one used internally in the
system. Instead, terms like GBP or simply Pounds should be used,
depending on whether the system was intended for professional
currency traders or for the general public.

As far as possible, dialogues should be in the users’ native
language and not in a foreign language (see Chapter 9 for a discus-
sion of translation and other internationalization issues). Of course,
concerns for the users’ “language” should not be limited to the
words in the interface but should include nonverbal elements like
icons (see page 38 for a discussion of how to elicit ideas for intui-
tive icons).

As part of the general principle of speaking the users’ language,
one should take care not to use words in nonstandard meanings,
unless, of course, a word meaning that would be nonstandard in
the general population happens to be the standard use of the word
in the user community. Special dictionaries exist to help distin-
guish common meanings of words from less common meanings.
For example, [Dale and O’Rourke 1981] lists 44,000 English word
meanings and provides statistics on how many Americans know
each meaning. Even though such statistics are only valid in the
country where they were collected, one can normally assume that

123

Usability Engineering

the avoidance of unusual word meanings will also be a way to
improve international understandability of an interface.

To speak the users’ language does not always imply limiting the
interface vocabulary to a small set of commonly used words. On
the contrary, when the user population has its own specialized
terminology for its domain, the interface had better use those
specialized terms rather than more commonly used, but less
precise, everyday language [Brooks 1993]. Even for the general
population, specific, distinguishing words are better than bland
words.

Speaking the users’ language also involves viewing interactions
from the users’ perspective. For example, a security transactions
statement should read, “ You have bought 100 shares of XYZ
Corp.” and not, “We have sold you 100 shares of XYZ Corp.”
As another example, consider a computer utility, such as a virus
guard, that is continuously active, running in the background, but
which might periodically need to be deactivated for whatever
reason. One approach might be to introduce an “override mode”
with a command that could be activated whenever the user needed
to perform a task that conflicted with the background utility.
Unfortunately, the override would be on when the user wanted the
utility to be off, so using this model would conflict with the user-
oriented perspective, even though it might in fact be a perfect
reflection of the internal workings of the operating system. A better
choice would be a reverse model using a dialog box with a
checkbox for “XyZ-utility active: (.” This design also simpli-
fies the interface since it has no concept of a special override mode.

The system should not force naming conventions or restrictions on
objects named by the user. For example, users should be allowed to
use as long names as they want, even though the system may not
always be able to show very long names without scrolling. If the
system for some reason cannot handle names longer than a certain
number of characters, it should not just truncate without warning
the user’s input after that number of characters. Instead, it should
offer a constructive error message and allow the user to edit the

124

Usability Heuristics

name to be as meaningful as possible within the limitations
imposed by the system.

Given the advice to speak the users” language, an obvious idea is
simply to ask users what words and concepts they would like to
see in the interface. Unfortunately, the verbal disagreement
phenomenon guarantees the failure of that approach: There are so
many different words in common use for the same things that the
probability is very low that a user will mention the most appro-
priate name when asked. Furnas et al. [1987] found that the proba-
bility that two users would mention the same name was no more
than 7-18%, depending on the phenomenon being named. Even if
one asked several users and then picked the name mentioned by
most of them, one would still only match 15-36% of the users. In
other words, the majority of users will be dissatisfied anyway, even
if words are chosen by asking the users themselves.

A much better alternative is to let the users vote on the names,
based on a shortlist of possible names. This list can be generated by
several means, including suggestions from the developers, from
usability specialists, and from asking a few users. In one experi-
ment [Bloom 1987-88] names for the features in a mail merge
facility were chosen in three different ways:

* Technical terms as suggested by the original developers of the
system: variable field, token character, record, delimiter, etc.

* The terms suggested by the most users when they were given a
short description of the concepts: part, marker, unit, period, etc.

e The winners when users were given a list of several alternative
terms and asked to vote: component, placeholder, information
package, separator, etc.

Not only do the winners of the user vote seem more descriptive,
they also tested much better in a user test. Test users learning the
system made 11.1 errors on average when using the original
system with the technical terms, 10.3 errors when using the system
with the terms suggested by the most users, and only 8.3 errors
when using the system with the vote-winning terms. For a second
test, only the technical terms and the vote winners were compared.
Users made 14.7 errors when learning the system with the technical

125

Usability Engineering

terms and only 4.6 errors when learning the system with the vote-
winning terms, confirming that the vote-winners made the system
easier to learn. However, continued testing after the users had
learned the system found exactly the same error rate (2.0 errors) for
both sets of names, indicating that people can learn basically
anything eventually. The test users were finally asked to perform a
new set of tasks with the system without being allowed access to
the documentation. During this transfer test, the users of the
system with the technical terms made 23.6 errors, whereas the
users of the system with the vote-winning terms made only 5.8
errors. This latter result shows that the vote-winning terms enabled
the users to understand the system better in that they could gener-
alize their knowledge to correctly use it in new ways.

Given that there are so many ways to refer to the same concepts,
computers should allow for rich use of synonyms in interpreting
command languages and in documentation indexes. It should also
be possible for the users to define aliases (user-defined terms that
are translated by the system). Not only may an alias be easier to
remember for the user who defined it, but it can also serve as a
shortcut for complex sequences such as commands with multiple
parameters or electronic mail addresses. For some applications,
such as the searching of online documentation or database queries,
the system itself may build up a list of aliases over time through
the use of adaptive indexing [Furnas 1985], where new names for
objects are added every time a user tries a query term that is not
known by the system, but where the user eventually succeeds in
finding the relevant information anyway.

Mappings and Metaphors

A more general way of approaching the goal of a user-oriented
dialogue is to aim at good mappings between the computer
display of information and the user’s conceptual model of the
information. Such mappings are not always easy to discover, as
exemplified by the case one would naively imagine to be the
simplest of all: that of producing a world map [Monmonier 1991].

126

Usability Heuristics

Unfortunately, the world is round, and the map is flat, leading to
all kinds of geographical distortions and the need to select a
mapping projection suitable for the user’s task.

To discover such mappings, the first step is to perform a task anal-
ysis and build up an understanding of the users and their domain.
In addition to talking with users and observing them, it is also
possible to use more complex methods to build an understanding
of the users” knowledge representation and the way they model
their domain. Typically, users are asked to list or group concepts in
the domain, and the orderings or groupings are assumed to corre-
spond to the users” model of the domain. Some commonly used
techniques include ordered recall (users are allowed to freely asso-
ciate and mention as many concepts as they can think of, with
concepts that are mentioned close together assumed to be associ-
ated in the user’s mind), card sorting (each concept is written on a
card, and the user sorts the cards into piles), and paired similarity
ratings (users are given a questionnaire listing all possible pairs of
concepts and asked to rate their similarity) [McDonald and
Schvaneveldt 1988]. The outcome of these tests can either be used
directly or be subjected to multidimensional scaling or cluster anal-
ysis, using a statistics program. For example, Loshe et al. [1991]
used card sorting to elicit the users’” mental models of a set of
graphics and charts. Subjects who were graphic artists were found
to structure the graphics significantly differently than other
subjects, indicating the need to structure user interfaces to graphics
and charting software differently for these two categories of users.

User interface metaphors [Carroll et al. 1988; Wozny 1989] are a
possible way to achieve a mapping between the computer system
and some reference system known to the users in the real world.
For example, consider the task of installing or updating new soft-
ware on a personal computer. The traditional user interface to this
task is very system-oriented, listing files, features, disks, etc., from
which the user has to choose. Alternatively, a mail-order catalog
could be used as a metaphor to structure the interface and allow
the users to utilize their existing knowledge about how one selects
and previews options [Card and Henderson 1987].

127

Usability Engineering

Unfortunately, metaphors may mislead users, or users’ under-
standing of the computer may be limited to those aspects that can
be inferred from the metaphor [Halasz and Moran 1982]. For
example, the metaphor “a word processor is like a typewriter” will
help users discover features like backspace and scrolling, but may
prevent them from looking for a global replace feature.

As another example, the operation “delete file” has often been
metaphorized in graphical user interfaces, with icons like a trash
can, a paper shredder, and even a black hole used to represent dele-
tion. Even though the black hole cannot be said to be very user-
oriented, all these icons represent ways to draw upon the users’
non-computer-related experience and knowledge and they thus
serve as good metaphors for the concept of file deletion. A problem
arises when considering data security. Most current operating
systems do not delete the contents of a file from the disk when the
file is deleted. Often, the only result of a file deletion is to make the
storage space occupied by the file available for use by other files at
a later date. This means that as long as no other files have over-
written the ostensibly deleted storage blocks, it will be possible to
read the contents of the deleted file. Users with sensitive data on
their disks can therefore not rely on file deletion to safeguard their
data in cases where others have access to the disk—for example
because it is sold or sent in for repair. The paper-shredder icon may
give users a false sense of security due to the connotations of phys-
ical paper shredders with respect to the destruction of confidential
paper documents. In contrast, the trash-can icon at least implicitly
suggests that others might look through the discarded documents.

The lesson from these examples is that one should take care when
“speaking the users’ language” not to inadvertently imply more
than one intended. Specifically, discussions of interface metaphors
in manuals should be supplemented with explanations of the
differences between the real-world reference system and the
computer system. Care should be taken to present the metaphor as
a simplified model of a more detailed conceptual model of the
system [Nielsen 1990c] and not as a direct representation of the
system.

128

Usability Heuristics

Metaphors also present potential problems with respect to interna-
tionalization, since not all metaphors are meaningful to all cultures.
For example, a Danish interface designer might choose to use the
pause signal as a metaphor for delayed system response, drawing
upon the common knowledge that radio stations play a special
endless tune of the same 13 notes repeated over and over when one
show finishes before the scheduled starting time of the next.
However, the concept of a pause signal would be quite foreign to
users in many other countries, such as the United States, where
radio stations fill every available moment with commercials and
would never put on a special signal just to fill up time.

5.3 Minimize User Memory Load

Computers are very good at remembering things very precisely, so
they should take over the burden of memory from the user as
much as possible. In general, people have a much easier time at
recognizing something that is shown to them than they have at
having to recall the same information from memory without help.
This phenomenon is well known to anybody who has learned a
foreign language: Your passive vocabulary is always much larger
than your active vocabulary. And of course, computers really speak
a foreign language as far as the users are concerned.

The computer should therefore display dialogue elements to the
users and allow them to choose from items generated by the
computer or to edit them. Menus are a typical technology to
achieve this goal. It is also much easier for the user to modify infor-
mation displayed by the computer than to have to generate all of
the desired result from scratch. For example, when users want to
rename an information object, it is very likely that they will want
the new name to be similar to the old one, so the text edit field in
which the user is supposed to enter the new name should be pre-
populated with the old name, allowing users to make modifica-
tions instead of typing everything.

Interfaces based on recognition rely to a great extent on the visi-
bility of the objects of interest to the user. Unfortunately, displaying

129

Usability Engineering

too many objects and attributes will result in a relative loss of
salience for the ones of interest to the user, so care should be taken
to match object visibility as much as possible with the user’s needs
[Gilmore 1991]. As usual we find that “less is more.”

Whenever users are asked to provide input, the system should
describe the required format and, if possible, provide an example
of legal and sensible input, such as a default value. For example, a
system asking the user to enter a date could do it as follows:

* Enter date (DD-Mmm-YY, e.g., 2-Aug-93):

An even better dialogue design would provide the example in the
input field itself as a default value (possibly using today’s date or
some other reasonable date), thus allowing the user to edit the date
rather than having to enter all of it.

There is no need for the user to have to remember or guess at the
range of legal input and the unit of measurement that will be used
to interpret it. Instead, the system can supply that information as
part of the dialogue, such as, for example:

e Left margin: 10 points [0-128]

A famous example indicating the need to display measurement
units to help the user’s memory was the positioning of a space-
based mirror by the space shuttle Discovery [Neumann 1991]. The
mirror was supposed to be aimed at a mountain top in order to
reflect a laser beam, and the user had ordered the computer to
point the mirror toward a point with an elevation of “10,023 above
sea level.” The user apparently entered the elevation as if it were
measured in feet, whereas, in fact, the system used miles as its
measurement unit, causing the mirror to be aimed away from the
Earth, toward a point 10,000 miles out in space.5

To minimize the users” memory load, the system should be based
on a small number of pervasive rules that apply throughout the

5. With respect to measurement units, other usability principles often lead to a
need allow users to select between several alternative units, such as inches,
feet, miles, centimeter, meter, and kilometer, depending on their needs.

130

Usability Heuristics

AAAAAAA|
BRBBBBBB

l “PASTE”

AAAAARAA
CECCCCC
BBBBBBB

Figure 13 A generic command: “Paste” can be used to insert a line of C’s
(text) as well as a striped square (graphics) at the insertion point.

user interface. If a very large number of rules is needed to deter-
mine the behavior of the system, then the user will have to learn
and remember all those rules, making them a burden. On the other
hand, if the system is not governed by any rules at all, then the user
will have to learn every single dialogue element on its own, and it
is impossible to predict the behavior of a dialogue element without
already knowing (and remembering) how it works.

The use of generic commands [Rosenberg and Moran 1984] is one
way to let a few rules govern a complex system. As shown in
Figure 13, generic commands make similar things happen in
different circumstances, making it sufficient for the user to learn a
few commands in order to work with many different types of data.
One of the main advantages of generic commands is that they
support transfer of learning from one application to the next, since
users do not need to relearn those commands they already know
[Ziegler et al. 1986].

Generic commands need not perform exactly the same function in
all circumstances, as long as the user can think of the command as

131

Usability Engineering

a single unified concept, such as “insert the object from the clip-
board” in the case of a paste command. As shown by Figure 13,
this generic command may actually insert the clipboard and move
some old objects out of the way, when it operates on text, but
perform the insert operation without moving anything when it
operates on graphics. The designer of a generic command will need
to determine what “naturally” feels like the same command to
users, even if some details will differ due to the requirements of the
different parts of the system.

54 Consistency

Consistency is one of the most basic usability principles. If users
know that the same command or the same action will always have
the same effect, they will feel more confident in using the system,
and they will be encouraged to try out exploratory learning strate-
gies because they will already have part of the knowledge needed
to operate new parts of the system [Lewis ef al. 1989].

The same information should be presented in the same location on
all screens and dialog boxes and it should be formatted in the same
way to facilitate recognition. For example, my heating bill contains
a comparison between my current heating use and my use in the
same month in the previous year, listed as a table with the current
year in the left column and the previous year in the right. To facili-
tate my interpretation of these numbers, a footnote on the bill
furthermore contains information about the average temperature
in each of the two years. Unfortunately, the footnote mentions the
previous year before (that is, to the left of) the current year, thus
inverting the relation compared to that used in the table. Consis-
tency considerations would have implied a design of this printout
with the same spatial relation between the two periods for both
kinds of information. An order where the previous year was
mentioned before the current year might be preferred as being
consistent with the way timelines work, but unfortunately one can
also argue that the reverse order achieves a better match with the
user’s task of assessing current heat usage. As is often the case in

132

Usability Heuristics

user interface design, one would have to decide which of these two
considerations was most important; once this decision had been
made, one should follow it consistently and not mix the two layout
rules.

Many aspects of consistency become easier to achieve to the extent
that one is following a user interface standard in the design, since
the standard will then have specified many details of the dialogue,
such as, for example, how to indicate a pop-up menu or which
typeface to use in a list of font sizes. See Chapter 8 for a discussion
of user interface standards and ways to increase compliance and
thereby consistency. Unfortunately, standards compliance is not
sufficient to ensure consistency, since the standards leave a fair
amount of leeway for the designers. See the discussion of user
interface coordination in Section 4.6 (page 90) for ways to promote
consistency during interface design.

Consistency is not just a question of screen design, but includes
considerations of the task and functionality structure of the system
[Kellogg 1987, 1989]. For example, Eberts and MacMillan [1987]
found that subjects were more confused when they switched
between using a command-line mainframe and a command-line
personal computer than when they switched between the
command-line personal computer and a graphical personal
computer. From a screen design perspective, the two command-
line interfaces were very similar, but the underlying operating
systems were in fact very different. And the two personal computer
interfaces were built on top of systems with the same basic philos-
ophy and features.

A study of a popular spreadsheet program found 10 consistency
problems causing common errors for novice users [Doyle 1990].
Seven of these problems were due to inconsistencies between the
spreadsheet and the users’ task expectations, three were due to
inconsistencies between the spreadsheet and other user interfaces,
and only two problems were due to inconsistencies within the
spreadsheet itself. The spreadsheet’s menu navigation method was
classified as being inconsistent in all three ways and was therefore
counted in all three categories. Of course, other systems may have

133

Usability Engineering

different distributions of their consistency problems, but it is prob-
ably quite representative that the larger scopes of consistency are
the most difficult to get right.

5.5 Feedback

The system should continuously inform the user about what it is
doing and how it is interpreting the user’s input. Feedback should
not wait until an error situation has occurred: The system should
also provide positive feedback, and it should provide partial feed-
back as information becomes available. For example, the way to
write the German letter {i on many keyboards involves first typing
the umlaut, ”, and then typing the character that is to go under the
two dots. Some systems provide no visible feedback as the first
part of the character is typed, leading many novice users to
conclude that the system does not know how to deal with umlauts.
A better design would show the umlaut and then change the
cursor in some way to indicate that the system was waiting for the
second part of the character.

System feedback should not be expressed in abstract and general
terms but should restate and rephrase the user’s input to indicate
what is being done with it. For example, it is a good idea to give a
warning message in case the user is about to perform an irrevers-
ible action, such as overwriting a file (see Section 5.9). Assume that
the user is about to copy a file to another disk and that the copy
operation would overwrite a file with the same name. The worst
feedback (except none, of course) would be to state that a file was
about to be overwritten, without giving its name. Better feedback
would include the name of the file, and even better feedback would
include attributes of the two files, such as file type and modifica-
tion date, to help the user understand whether the copy operation
was just replacing an old copy with a newer copy of the same file
or whether the file being overwritten was in fact a completely
different file that happened to have the same name.

Different types of feedback may need different degrees of persis-
tence in the interface [Nielsen 1987c]. Some feedback is only rele-

134

Usability Heuristics

vant for the duration of a certain phenomenon, and can thus have
low persistence, going away when it is no longer needed. For
example a message stating that the printer is out of paper should
be removed automatically once the problem has been fixed. Other
feedback needs to have medium persistence and stay on the screen
until the user explicitly acknowledges it. An example in this cate-
gory would be a message stating that the user’s output had been
rerouted to another printer because of some problem with the
printer specified by the user. Finally, a few types of feedback may
be so important that they require high persistence, remaining a
permanent part of the interface. An example might be the indica-
tion of remaining free space on a hard disk.

Response Time

Feedback becomes especially important in case the system has long
response times for certain operations. The basic advice regarding
response times has been about the same for many years [Miller
1968; Card et al. 1991]:

* 0.1 second is about the limit for having the user feel that the
system is reacting instantaneously, meaning that no special feed-
back is necessary except to display the result.

* 1.0 second is about the limit for the user’s flow of thought to stay
uninterrupted, even though the user will notice the delay.
Normally, no special feedback is necessary during delays of
more than 0.1 but less than 1.0 second, but the user does lose the
feeling of operating directly on the data.

* 10 seconds is about the limit for keeping the user’s attention
focused on the dialogue. For longer delays, users will want to
perform other tasks while waiting for the computer to finish, so
they should be given feedback indicating when the computer
expects to be done. Feedback during the delay is especially
important if the response time is likely to be highly variable,
since users will then not know what to expect.

Normally, response times should be as fast as possible, but it is also
possible for the computer to react so fast that the user cannot keep
up with the feedback. For example, a scrolling list may move so
fast that the user cannot stop it in time for the desired element to

135

Usability Engineering

o ™
Sending the File “Usability Book.chapter5”
Size: 157,841 Bytes.
0% 25% 50% 75% 100%
L Estimated Time Remaining (min:sec): 1:30)

Figure 14 Percent-done indicator for a hypothetical file-transfer
program. The design not only provides feedback expressed in the user’s
terms (the name of the file) and with respect to the progress of the transfer,
it also provides an easy way out (cf. Section 5.6) in case the user gets tired
of waiting or discovers that the wrong file is being transferred.

remain within the available window. The fact that computers can
be too fast indicates the need for user-interface changes, like anima-
tions, to be timed according to a real-time clock rather than being
timed as an indirect effect of the computer’s execution speed: Even
if a faster model computer is substituted, the user interface should
still be usable.

In cases where the computer cannot provide fairly immediate
response, continuous feedback should be provided to the user in
form of a percent-done indicator like the one shown in Figure 14
[Myers 1985]. As a rule of thumb, percent-done progress indicators
should be used for operations taking more than about 10 seconds.
Progress indicators have three main advantages: They reassure the
user that the system has not crashed but is working on his or her
problem; they indicate approximately how long the user can be
expected to wait, thus allowing the user to do other activities
during long waits; and they finally provide something for the user
to look at, thus making the wait less painful. This latter advantage
should not be underestimated and is one reason for recommending
a graphic progress bar instead of just stating the expected
remaining time in numbers.

Usability Heuristics

For operations where it is unknown in advance how much work
has to be done, it may not be possible to use a percent-done indi-
cator, but it is still possible to provide running progress feedback in
terms of the absolute amount of work done. For example, a system
searching an unknown number of remote databases could print the
name of each database as it is processed. If this is not possible
either, a last resort would be to use a less specific progress indicator
in the form of a spinning ball, a busy bee flying over the screen,
dots printed on a status line, or any such mechanism that at least
indicates that the system is working, even if it does not indicate
what it is doing.

For reasonably fast operations, taking between 2 and 10 seconds, a
true percent-done indicator may be overkill and, in fact, putting
one up would violate the principle of display inertia (avoiding
flash changes on the screen so rapidly that the user cannot keep
pace or feels stressed). One could still give less conspicuous
progress feedback. A common solution is to combine a “busy”
cursor with a rapidly changing number in small field in the bottom
of the screen to indicate how much has been done.

System Failure

Informative feedback should also be given in case of system failure.
Many systems are not designed to do so and simply stop
responding to the user when they go down. Unfortunately, no
feedback is almost the worst possible feedback since it leaves users
to guess what it wrong. Systems can be designed for graceful
degradation, enabling them to provide some feedback to users
even when they are mostly down.

As an example, consider feedback to users of an automated teller
machine (ATM). On February 13, 1993, all 1,200 ATMs belonging to
a major bank in New York City refused to perform any user trans-
actions for a period of four hours due to a bug in a software
upgrade installed at the data center. According to newspaper
reports, customers “crisscrossed the city on futile scavenger hunts
for an operating cash machine”® since they did not know what was
going on and hoped that other machines might be working. Since it
would be unrealistic to expect a 1,200 node distributed computer

137

Usability Engineering

system to function perfectly all the time without any software,
hardware, or network failures, the user interface at the individual
ATMs should be designed to provide information to customers in
case of any such downtime. Different messages should be given,
depending on whether the error is due to the central system (in
which case customers need not waste time finding another
machine) or whether the error is local. In order to inform customers
correctly, the ATM needs to be able to perform rudimentary diag-
nostics, and the entire system needs to be built with such diagnos-
tics in mind. Assuming that the system is designed for it, it should
be feasible to give users meaningful information about the likely
cause and/or location of any system failures.

5.6 Clearly Marked Exits

Users do not like to feel trapped by the computer. In order to
increase the user’s feeling of being in control of the dialogue, the
system should offer the user an easy way out of as many situations
as possible. For example, all dialog boxes and system states should
have a cancel button or other escape facility to bring the user back
to the previous state.

In many cases, exits can be provided in the form of an undo facility
that reverts to the previous system state [Abowd and Dix 1992;
Yang 1992]. Users quickly learn to rely on the existence of undo, so
it should be made pervasively available throughout the system as a
generic command that undoes any state changes rather than being
restricted to only undoing a special category of user actions. Given
that undo and escape facilities are generally available, users will
feel encouraged to rely on exploratory learning since they can
always try out unknown options, trusting in their ability to get out
of any trouble without ill effects. A basic principle for user interface
design should be to acknowledge that users will make errors no

6. “At a bank, automatic frustration machines,” New York Times February 14,
1993, p. 45.

138

Usability Heuristics

matter what else is done to improve the interface, and one should
therefore make it as easy as possible to recover from these errors.

As mentioned above, system response times should be as fast as
possible. In cases where the computer cannot finish its processing
within the 10-second limit for keeping the user’s attention, it
should always be possible for the user to interrupt the computer
and cancel the operation. In general, interfaces should show a high
degree of responsiveness [Duis and Johnson 1990], to the extent
that paying attention to the user’s new actions should get higher
priority than finishing the user’s old actions. For example, if a
graphics program takes a fair amount of time to repaint the screen,
it should allow the user to scroll or to change the zoom level even
before the screen has been completely redrawn.

The various exit and undo mechanisms should be made visible in
the interface and should not depend on the user’s ability to
remember some special code or obscure combination of keys. Visi-
bility is of course a general user interface design principle, with the
possible exception of some dialogue accelerators, but visibility is
especially crucial for exit support since users will need these mech-
anisms in cases where they are in unfamiliar territory and may be
afraid to lose data if they do the wrong thing.

5.7 Shortcuts

Even though it should be possible to operate a user interface with
the knowledge of just a few general rules, it should also be possible
for the experienced user to perform frequently used operations
especially fast, using dialogue shortcuts. Typical accelerators
include abbreviations, having function keys or command keys that
package an entire command in a single keypress, double-clicking
on an object to perform the most common operation on it, and
having buttons available to access important functions directly
from within those parts of the dialogue where they may be most
frequently needed. Pen computers, vertual realities, and some
mouse interfaces may may also use gestures as accelerators.

139

Usability Engineering

A good example of a shortcut to make a frequent operation faster is
the use of a structure generator in a hypertext authoring system
[Jordan et al. 1989]. Since hypertext authors may often want to
generate large numbers of similar hypertext structures with a given
pattern of typed nodes and links (for example, each of the courses
in an online course catalog might have nodes for course content,
prerequisites, instructor, textbooks, and location), they can work
faster if the system allows them to define templates of these struc-
tures and to generate sets of nodes and links based on a template in
a single operation. Macro and scripting facilities can be used to
achieve similar effects in traditional command languages, and
similar facilities are also being introduced to graphical user inter-
faces.

Type-ahead (typing the next input before the computer is ready to
accept it) is not really a shortcut as such since it still requires the
user to generate a complete sequence of input, but it can speed up
the interaction by allowing the user to get ahead of the computer
and not have to pay attention to all the steps in the dialogue. Simi-
larly, in telephone-based interfaces and other speech-based inter-
faces, users should be allowed to interrupt the voice prompts as
soon as they know what to say. Graphical user interfaces can
support a feature similar to type-ahead, in what might be called
click-ahead: Users can click on the spot where the “OK” button will
appear to dismiss dialog boxes before they have even appeared,
and they can click in partly obscured windows before they have
been made active. It is dangerous to allow type-ahead and click-
ahead in all circumstances, however. For example, a critical alert
message should not go away without having been visible, and the
type-ahead buffer should be cleared in case there is an error in the
execution of a prior command which would tend to make the rest
of the user’s input invalid.

Users should be allowed to jump directly to the desired location in
large information spaces, such as a file or menu hierarchy. Often, a
hypertext-like approach [Nielsen 1990a] can be used with links
between information elements that are likely to be used together. In
file systems, such links are often called aliases, since they provide a
way to name an information object (file) without having to specify

140

Usability Heuristics

the full pathname. Alternatively, popular locations may be given
easy-to-remember names that have to be typed in by the user. This
approach is popular on many videotex services. Finally, users may
be allowed to give their own names to those locations they find
especially important. By doing so, users can build up a list of book-
marks that will enable them to return quickly to a small set of loca-
tions [Bernstein 1988; Monk 1989]. Of course, following the
“minimize-user-memory-load” principle, the user should have
easy access to a list of the bookmarks defined by that user [Olsen
1992].

Users should be able to reuse their interaction history [Greenberg
1993]. A study of a command-line system showed that 35% of all
commands were identical to one of the five previous commands
and that 74% of the commands had been issued at least once before
[Greenberg and Whitten 1988]. Thus, a simple menu of the last few
things the user had done would make it possible for the user to
reissue a large number of commands without having to reenter
them. Also, word processors, hypertext systems, and other systems
where users navigate large amounts of information should have a
backtrack feature or other history mechanisms to allow the user to
return directly to prior locations.

Even though command reuse is simpler for command-language
interfaces, some direct manipulation interfaces allow users to
reissue the last formatting command or repeat the last search
command by a simple command-key shortcut. It is also possible to
use a kind of comic strip to show previous states of a graphical
interface as miniatures [Kurlander and Feiner 1992] using a prin-
ciple called a visual cache to allow fast direct access to those states
[Nielsen 1990g; Wiecha and Henrion 1987].

As a simple example of the use of the user’s interaction history to
provide shortcuts, some applications keep track of which files
users often open in those applications [Barratt 1991]. The applica-
tions can then offer users a special menu of the files they are most
likely to open next, either because they have been used recently,
because they are used a lot in general, or because they are normally
used together with other files already opened in a particular

141

Usability Engineering

session. Statistics on such “working sets” of files that are often used
together are slightly harder to get right than statistics on the most
recently used files, but they can offer users a convenient shortcut to
get at several files in a simpler way than having to find them one at
a time in the file system.

System-provided default values constitute a shortcut since it is
faster to recognize a default and accept it than having to specify a
value or an option. In many cases, users do not even need to see the
default value, which can remain hidden on an optional screen that
is only accessed in the rare case where it needs to be changed.
Defaults also help novice users learn the system since they reduce
the number of actions users need to make before using the system,
and since the default values give an indication of the kind of values
that can legally be specified.

5.8 Good Error Messages

Error situations are critical for usability for two reasons: First, by
definition they represent situations where the user is in trouble and
potentially will be unable to use the system to achieve the desired
goal. Second, they present opportunities for helping the user
understand the system better [Frese et al. 1991] since the user is
usually motivated to pay some attention to the contents of error
messages, and since the computer will often have some knowledge
of what the problem is.

Error messages should basically follow four simple rules [Shnei-
derman 1982]:

® They should be phrased in clear language and avoid obscure
codes. It should be possible for the user to understand the error
message by itself without having to refer to any manuals or code
dictionaries. It might be necessary to include internal, system-
oriented information or codes to help systems managers track
down the problem, but such information should always be given
at the end of an otherwise human-readable error message and
should be combined with constructive advice, such as “Report
this information to your systems manager to get help.”

142

Usability Heuristics

® They should be precise rather than vague or general. For
example, instead of saying, “Cannot open this document,”
the computer should say “Cannot open ‘Chapter 5’
because the application is not on the disk” (also
following the principle about giving feedback by restating the
user’s input).

* They should constructively help the user solve the problem. For

example, the above error message that a document could not be
opened could be made more constructive by replacing the words
“the application” with the name of the application, indi-
cating to the user what should be done in order to read the docu-
ment. The message could also offer to try to open the document
with some other application that was known to accept data of the
given type.
One useful way of generating constructive error messages is by
guessing at what the user really meant to say. In the case of
textual input, spelling-correction methods have been available
for many years [Peterson 1980; Bentley 1985], and these methods
can be especially fast and precise when the set of correct user
inputs is restricted to a known set of terms such as the names of
files and commands [Bickel 1987]. Durham et al. [1983] found
that even a simple spelling corrector could handle 27% of all user
errors in a text-oriented interface, thus confirming the value of
this cheap method. The Interlisp programming system even had
a feature called DWIM (Do What I Mean—not what I say) [Sand-
ewall 1978; Teitelman 1972], where the computer automatically
performed the action it assumed that the user wanted. DWIM is
somewhat dangerous, though, unless the computer is absolutely
sure.

* Finally, error messages should be polite and should not intimi-
date the user or put the blame explicitly on the user. Users feel
bad enough as it is when they make errors. There is no need for
the computer to make the situation even worse by accusing error
messages like the classic “ILLEGAL USER ACTION, JOB
ABORTED” (in upper case, at that—screaming at the user). Error
messages should definitely avoid abusive terms like fatal, illegal,
and so forth. Often, error messages can be worded such as to
suggest that the problem is really the computer’s fault—as
indeed it is since the interface in principle ought to have been

143

Usability Engineering

designed to have made the error impossible. For example, the
LOGO programming language will give the message “I don't
know how to foo” if the user calls the undefined procedure foo,
thus seeming to take a little of the blame [Nicol 1990].

In addition to having good error messages, systems should also
provide good error recovery. For example, users should be allowed
to undo the effect of erroneous commands, and they should be able
to edit and reissue previous commands without having to enter
them from scratch.

André Bisseret [1983] from the French INRIA research center tells a
story about how he tried to define a user ID, giving rise to the
following dialogue:

Computer: Type user name
Bisseret: Bisseret
Computer: Error, type user name

Monsieur Bisseret was not pleased to find that the computer
considered his name illegal. Unfortunately, the computer only
accepted user IDs up to seven characters in length, so it could at
least have given a constructive error message by explicitly saying
so. But actually, a better redesign would have allowed user names
of arbitrary length since doing so would follow the principle of
speaking the user’s language. There is no need to force users to
remember strange contractions of their own and other people’s
names. Such a redesign would avoid any need to have this error
message in the first place since the potential error situation would
be designed away. Doing so is also a major dialogue principle, as
discussed on page 145.

Multiple-Level Messages

Instead of putting all potentially useful bits of information in all
messages, it is possible to use shorter messages that will be faster to
read as long as the user is given easy access to a more elaborate
message. The most common way to implement multilevel
messages is to have only two levels and to supplement the short
initial message with a button that can be clicked for more informa-

144

Usability Heuristics

tion. In principle, it is also possible to have many levels of detail,
with the navigation between the levels based on some kind of
hypertext.

In an integrated user-assistance facility based on hypertext, it
would also be possible for the user to link from an error message to
the location in the help system that gives further assistance on the
problem. If the user’s difficulty was not the error situation in
general but a single incomprehensible word in the message, it
would be possible to link from that word to the location in the
online manual where it was defined. And if the user wanted
further assistance than could be provided by the help system or the
manual, it would be possible to link further, to the appropriate
location in the tutorial component, to get a computer-aided instruc-
tion lesson.

As mentioned above, error messages should normally not reflect
mysterious internal states of the computer that are completely
incomprehensible to the regular users even though the information
may help specialized support staff locate and fix the problem. The
notion of multiple-level messages can provide access to such
detailed information for those wizard-level users who want it
while shielding less-knowledgeable users from being confused and
intimidated. Ideally, it should be possible to dig steadily deeper
into a set of messages from lower and lower levels of the system
[Efe 1987] until the error has been identified.

5.9 Prevent Errors

Even better than having the good error messages recommended in
the previous section would be to avoid the error situation in the
first place. There are many situations that are known to be error-
prone [Norman 1983; Reason 1990; Senders and Moray 1991], and
systems can often be designed to avoid putting the user in such
situations.

For example, every time the user is asked to spell out something,
there is a risk of spelling errors, so selecting a filename from a

145

Usability Engineering

menu rather than typing it in is a simple way to redesign a system
to eliminate an entire category of errors.

User errors can be identified as candidates for elimination through
redesign either because of their frequency or because of their
serious consequences. These two kinds of information can be gath-
ered either through user testing (see Chapter 6) or by logging
errors as they occur during field use of the system (see Section 7.4).

Errors with especially serious consequences can also be reduced in
frequency by asking users to reconfirm that they “really, really
mean this” before going ahead with the dangerous actions. One
should not use confirmation dialogues so often, though, that the
user’s answer becomes automatic. If a long sequence of actions is
performed so frequently that it is experienced as a unit, the users
risk making a “capture error” [Norman 1983] if they ever need to
deviate from the sequence: Because they are so used to going ahead
in a certain way, they may continue and issue the fatal click on the
OK button before they have even read the warning message.

Avoid Modes

Modes [Monk 1986] are a frequent source of user error and frustra-
tion and should be avoided if possible. The classic example of
modes comes from early text editors, which had separate insert
and edit modes. When the user was in insert mode, all keyboard
input was interpreted as text to go into the file, and when the user
was in edit mode, all keyboard input was interpreted as
commands. An example from modern word processors is the use
of special annotation text that is sometimes visible and sometimes
hidden. Modes basically partition the possible user actions such
that not all actions are available at all times, which can be frus-
trating. Also, modes makes it possible for the system to interpret
what is seemingly the same user action in different ways
depending on the current mode,” which will often lead to user
errors. One famous user interface designer once had a T-shirt with
the caption “Don’t Mode Me In,” surrounded by a ring of barbed
wire [Tesler 1981] to indicate the frustration of being in one mode
and wanting to access a feature from some other mode.

146

Usability Heuristics

Unfortunately, modes are almost impossible to avoid totally in an
interface of some complexity. For example, most word processors
have a word-wrap feature that causes text to move to the next line
to prevent overflowing into the margin. In fact, this feature intro-
duces modes into the interface, since the same action (typing) may
or may not cause a new-line action to occur, depending on whether
an “end-of-line” mode is true. Normally, this mode does not bother
users who do not mind whether their writing get split over
multiple lines. When users do mind, such as when constructing
tables, this mode does cause problems, however [Monk 1986].

If modes cannot be avoided totally, one can at least prevent many
mode errors by explicitly recognizing the modes in the interface
design. By showing states clearly and distinctly to the user, a
designer can follow the principle of providing feedback, and thus
make it less likely that the user will mistake the current mode. In
one experiment, adding different sound effects to each of the
modes in a computer game decreased the users’ mode errors by
70% [Monk 1986]. Even if sound effects are not appropriate, other
means can be used to provide mode feedback such as different
colors of windows. In my own case, I often connect from my
personal computer to two different mainframes that have identical
operating systems and look-and-feel. After several cases of getting
confused about which system I was currently dealing with, I
changed the definition of the windows used for the terminal
sessions to use significantly different typefaces, thus providing me
with constant low-key feedback.

In addition to having clear status indicators showing the current
mode, the interface should also exhibit clear differences between
user actions in different modes to minimize the risk of confusing
individual interface elements. Similarly, system feedback should
be sufficiently varied to provide additional differentiation between

7. Note that modern user interfaces often rely on a kind of mode in the use of
window systems: Different user actions in different windows often have
different results. This flavor of modes is not as harmful as the traditional
modes, because the users do not have to issue special mode-changing
commands to move between windows and because the difference between
windows will be visually apparent in a well-designed interface [Nielsen 1986].

147

Usability Engineering

modes. Mode confusion can also be prevented by the use of so-
called spring-loaded modes where the users are only in the mode
as long as they actively hold down a button or perform some other
action that will automatically take them out of the mode as soon as
they let go [Sellen et al. 1990].

Even without the added usability problem of modes, one should in
general avoid having too-similar commands. In one case, a user
had trouble using a certain system and asked for technical support
over the telephone. The support person told the user exactly what
commands to type, but the user still had problems even after
following the instructions to the letter. The support person was
unable to diagnose the problem over the phone and finally went to
the user’s office to make sure that the instructions were actually
being carried out. The problem turned out to be that the system
required the commands to be typed in lower case and the user had
typed them in upper case. This difficulty is known as a “descrip-
tion error,” [Norman 1983] since the descriptions of the two situa-
tions are almost identical and therefore likely to be confused. In
this system, input in the wrong case was simply rejected, but other
interfaces may actually act differently on input depending on its
case. For example, case-sensitive search is often an option in text
editors. Because users can be expected to make description errors
very frequently, it is normally preferable to make case-independent
search the default and only provide case-sensitive search as an
extra feature that has to be explicitly activated by the user.

5.10 Help and Documentation

Even though it is preferable if a system is so easy to use that no
further help or documentation is needed to supplement the user
interface itself, this goal cannot always be met. Except for systems
like automated teller machines where true walk-up-and-use
usability is necessary, most user interfaces have sufficiently many
features to warrant a manual and possibly a help system. Also,
regular users of a system may want documentation to enable them
to acquire higher levels of expertise. Even so, the existence of help

148

Usability Heuristics

and documentation does not reduce the usability requirements for
the interface itself. “It is all explained in the manual” should never
be the system designer’s excuse when users complain that an inter-
face is too difficult.

The fundamental truth about documentation is that most users
simply do not read manuals [Rettig 1991]. Users prefer spending
their time on activities that make them feel productive [Carroll and
Rosson 1987], so they tend to jump the gun and start using the
system without having read all the instructions. If you doubt this
common observation and think that your users do read the docu-
mentation, try this simple experiment: visit a few users and place a
$10 bill somewhere in their manuals. On your next visit, check how
many of the bills are still there! (Of course, you can only use this
technique once.)

A corollary to this phenomenon is that if users do want to read the
manual, then they are probably in some kind of panic and will
need immediate help. This observation indicates the need for good,
task-oriented search and lookup tools for manuals and online
documentation. Since many users rarely use the manual before
they absolutely have to, they may not have the manual immedi-
ately available (it may have been lost or borrowed by another user),
which is one reason for the trend toward supplementing printed
manuals with online help and online documentation. Also, online
information has the potential for getting users the precise informa-
tion they need faster than a paper book through features like
hypertext [Nielsen 1990a] and good search facilities.

As an example, users of the SuperBook® online information
browser found information in an online manual in 4.3 minutes
compared to 5.6 minutes for users of a printed version of the same
manual [Egan et al. 1989]. This result was only achieved after
usability testing and iterative design of the online interface. Users
of the initial design performed the same test tasks in 7.6 minutes,
indicating the value of applying usability engineering principles to
online documentation as well as to the main system.

SuperBook is a registered trademark of Bellcore.

149

Usability Engineering

The main principle to remember about online help and documen-
tation is that these facilities add an extra set of features to a system,
thus complicating the interface just by virtue of existing. Even
though it is tempting to design extremely advanced and feature-
rich help and documentation systems, the need for an extra “help
on how to get help” is an obvious symptom of overblown help
design. Many users do not progress beyond the first one or two
help screens, and they mostly scan the screens for potentially
useful information rather than reading long paragraphs of text
[Farrand and Wolfe 1992].

In one empirical study of use of online help [Senay and Stabler
1987], 52,576 help sessions on a mainframe system were logged.
23% of all help requests turned out to be erroneous, meaning that
the user did not get any help whatsoever, confirming the observa-
tion that help is a system in its own right and can present usability
problems to the users. Even in the cases where they did succeed in
getting some help information, users only rated it as being useful
in 35% of the cases. This study confirms the saying, “help doesn’t”
(or at least, it does not always help, so the system had better be
usable even without online help).

Online help has the advantage over documentation that it can be
context-sensitive. For example, in a graphical user interface, the
user might point to elements in a dialog box to have them
explained by “balloon help” [Farkas 1993; Sellen and Nicol 1990].
Also, error messages can be linked to online help with further
explanation of the error and possible solutions. In any case, one
should remember that the user’s problem often is related to
wanting to do something else than what is offered by the current
system state, so it should also be possible for the user to ask task-
oriented questions.

Of course, one important aspect of help and documentation,
whether online or hardcopy, is the quality of the writing, especially
including the structuring of the information and the readability of
the text [Klare 1984]. In fact, a major in-depth study of online help
concluded that “the quality of help texts is far more important than
the mechanisms by which those texts are accessed” [Borenstein

150

Usability Heuristics

1985]. Even so, teaching technical writing is beyond the scope of
this book, so this section concentrates on the access mechanisms
and the structuring of the information. See, for example, [Horton
1990] for further coverage of technical writing, and see [Mirel 1991]
for a survey of research on the usability of printed documentation.
See [Borenstein 1985; Duffy et al. 1992; Houghton 1984; Kearsley
1988; Lee 1992] for surveys of online help and [Walker 1987] for
more information on online documentation. Perhaps most impor-
tant of all, the information contained in the text should be correct
and reflect the version of the system actually being used by the
users.

A second corollary to the finding that users normally do not read
the manual is that when they do want to read it, they often will not
be able to find it. This problem can be overcome by using online
documentation, since it normally stays on the computer once it has
been installed. Of course, users have been known to remove docu-
mentation and help files when they clean up their disks, so even
online documentation does not solve the problem completely.

In a field study of how people really use manuals [Comstock and
Clemens 1987], the manuals were found to be stored in many
strange locations. Some were nicely stored on bookshelves, though
they were not organized by subject matter but rather according to
their size and the color of the spines—indicating that it would be a
good idea to use these visible features of manuals in a manner
consistent with the content of the books. Other manuals were in
desk/file drawers, in boxes, in briefcases, on the floor, and on top
of computers and terminals. Users typically carried the manuals
around, used them standing up, and used several manuals at a
time.

A Model of Documentation Use

Users go through three stages in interacting with manuals and help
systems [Wright 1983, 1991]:

1. Searching: Locate information relevant to a specific need.

2. Understanding the information.

151

Usability Engineering

3. Applying: Carry out a procedure as described in the documenta-
tion.

Two main search tools are the index and the overview map of the
structure of the information space. Overview maps in books are
normally in the form of a table of contents, but a diagram may
sometimes be helpful too. Indexes are so obviously useful that
there should be no need to mention them, except that many
manuals are still published without an index. The index to a
printed manual should contain not only the system’s own termi-
nology but also user-oriented task terminology as well as a large
number of synonyms, including the terms commonly used by
competing vendors for the same concepts, since some users will
have also used those other vendors’ systems. Online documenta-
tion should also have a rich index with synonyms which can
furthermore offer the user full-text search capabilities and hyper-
text linking between related issues.

To help the user understand the information once it has been
found, not only should it be written without undue use of jargon,
but it should also be written in a way that corresponds to the tasks
users want to do and the sequence in which they should carry out
the tasks. If a sequence of steps is given, the steps should be
numbered. Also, it is often good to relate the specific information
given in the instructions to a conceptual model of the system, for
example through the use of a diagram.? Since users are likely to
have jumped directly into the document without having read the
previous sections, each section should be as self-contained as
possible. The documentation should also include a variety of
examples since it is often easier for users to understand examples
than to understand abstract descriptions [LeFevre and Dixon 1986].
Users are often able to modify examples to suit their own needs
without having to read much more.

8. Illustrations in manuals are very popular with users who in one study rated
them the second most important aspect of ease of use (after having well-orga-
nized material) [Angiolillo and Roberts 1991]. Thus, even disregarding what-
ever increased understanding users may derive from them, illustrations serve
a purpose by making the documentation more approachable and encouraging
the users to read it (or at least to browse it).

152

Usability Heuristics

After the user has found and understood the information, it comes
time to apply it to the system. It is always better for the user to be
able to refer to the instructions while carrying them out than to
have to remember them, so it should be possible to keep any online
help system visible in a separate window while the user returns to
the main application. It might even be possible to let the user copy
examples directly from the help system to have them executed. To
make it simpler for the user to carry out the instructions, they
should be stated as much as possible as step-by-step procedures,
which, of course, should be given in the sequence in which they
should be carried out. Finally, it should be possible for the users to
check that they have understood the instructions and carried them
out correctly. To a large extent such confirmation is hopefully avail-
able directly from whatever feedback the system provides in any
case, but the documentation should also mention how the user
might check whether the operation has been a success or a failure.

Because of the many uses to which users put documentation, one
might need as many as three different levels of documentation:

e Short reference cards and/or job aids [Reitman 1988] for the
expert user who just wants to check a fact, and for the novice
user who wants to get an overview of the system’s capabilities. A
similar function may be served by a keyboard template [Nolan
1991] for interfaces that are heavily based on function keys.

* Tutorial and/or introductory manuals for learners.
* Traditional reference manuals for expert users.

For multipart documentation, it is important to make each type of
manual as self-contained as possible. Users should not have to
combine information from multiple volumes in order to solve
typical problems. Also, of course, one should not provide too many
different types of documentation. Some software packages are
released with so many different volumes of documentation that
they need a special manual for the use of the manuals. The need for
such a meta-manual may serve as an indication that the documen-
tation is on the verge of being excessive.

153

Usability Engineering

5§ 8)

0

v

[t
-

Calculating a formula

Click the mouse in the cell where you want the
result to be displayed.

Type an equal sign (=) followed by the formula you
want to calculate.

For example, =4+6 or =SUM (B2:B10)

You can edit the formula by back-spacing with the
delete key or by using the mouse.

Press the enter key (the long key at the lower right

corner of the keyboard) to finish editing the formula.

After you press the enter key, the cell shows the
result as a number and the formula is not visible.

Did you type an equal sign (=) as the first char-
acter?

o

Figure 15 A hypothetical guided exploration card for a spreadsheet,
similar to the cards developed by Carroll et al. [1985].

The Minimal Manual

The minimalist philosophy of documentation [Carroll et al. 1987-
88] is a kind of reaction against the profusion of documentation
users are sometimes given. As an alternative, one can provide a
minimal manual that only gives whatever information is abso-
lutely necessary in order for the users to get started using the
system with common tasks.

Figure 15 shows an example of a minimalist guided exploration
card to help users get started quickly. Even though a minimal

154

Usability Heuristics

manual admittedly cannot contain all the information users might
possibly need, experience has shown that users do not read the
large manuals anyway, whereas they do benefit from minimal
manuals [Carroll 1990a]. A minimal manual should focus on real
tasks since users want to get started doing useful work immedi-
ately after they start using a system. Also, it should help the user
recognize error states and help them recover from the most
common errors (the check mark and ambulance in Figure 15).

5.11 Heuristic Evaluation

Heuristic evaluation is done by looking at an interface and trying
to come up with an opinion about what is good and bad about the
interface. Ideally people would conduct such evaluations
according to certain rules, such as those listed in typical guidelines
documents. Some collections of usability guidelines have on the
order of one thousand rules to follow, however, and are therefore
seen as intimidating by developers. Most people probably perform
some kind of heuristic evaluation on the basis of their own intu-
ition and common sense instead.

Heuristic evaluation as described here [Nielsen and Molich 1990;
Nielsen 1992¢, 1994b], however, is a systematic inspection of a user
interface design for usability [Mack and Nielsen 1993; Nielsen and
Mack 1994]. The goal of heuristic evaluation is to find the usability
problems in a user interface design so that they can be attended to
as part of an iterative design process. Other usability inspection
methods include cognitive walkthroughs [Lewis et al. 1990;
Wharton et al. 1982] and claims analysis [Carroll 1990b; Carroll et al.
1991; Kellogg 1990]. Heuristic evaluation involves having a small
set of evaluators examine the interface and judge its compliance
with recognized usability principles (the “heuristics”). A typical set
of heuristics is the principles used as the section headings in this
chapter.

In principle, individual evaluators can perform a heuristic evalua-
tion of a user interface on their own, but the experience from

155

Usability Engineering

T 100%

S]

w

@ 4

§ 75%-

£ _

&

b 4

S 50%-

Q 4

3

=)

S]

I~ 250/0_ 2

S]

-

2

S 1 i

< 0%t
0 5 10 15

Number of Evaluators

Figure 16 Usability problems found by heuristic evaluation as a function
of the number of evaluators.The figure shows the average results from six
studies discussed by Nielsen [1992c].

several projects indicates that any single evaluator will miss most
of the usability problems in an interface. Averaged over six projects
[Molich and Nielsen 1990; Nielsen and Molich 1990; Nielsen 1992c,
1994b], single evaluators found only 35% of the usability problems
in the interfaces. However, since different evaluators tend to find
different problems, it is possible to achieve substantially better
performance by aggregating the evaluations from several evalua-
tors. Figure 16 shows the proportion of usability problems found as
more and more evaluators are added. The figure clearly shows that
there is a nice payoff from using more than one evaluator, and it
would seem reasonable to recommend the use of about five evalua-
tors, and certainly at least three. The exact number of evaluators to
use would depend on a cost-benefit analysis, and more evaluators
should obviously be used in cases where usability is critical or
when large payoffs can be expected due to extensive or mission-
critical use of a system.

156

Usability Heuristics

Heuristic evaluation is performed by having each individual eval-
uator inspect the interface alone. Only after all evaluations have
been completed are the evaluators allowed to communicate and
have their findings aggregated. This procedure is important in
order to ensure independent and unbiased evaluations from each
evaluator. The results of the evaluation can be recorded either as
written reports from each evaluator or by having an observer
present during the evaluation sessions and having the evaluators
vocalize their comments as they go through the interface. Written
reports have the advantage of presenting a formal record of the
evaluation, but require an additional effort from the evaluators and
also need to be read and aggregated by an evaluation manager.
Using an observer adds to the overhead of each evaluation session
but reduces the workload on the evaluators and provides the
opportunity for having the result of the evaluation available fairly
soon after the last evaluation session since the observer only needs
to understand and organize his or her own notes and not a set of
reports written by others. Furthermore, the observer can assist the
evaluators in operating the interface in case of problems with, e.g.,
an unstable prototype, and help if the evaluators have limited
domain expertise and need to have certain aspects of the interface
explained.

In a user test situation, such as those discussed in Chapter 6, the
observer (normally called the “experimenter”) has the responsi-
bility of interpreting the user’s actions in order to infer how these
actions are related to the usability issues in the design of the inter-
face. This makes it possible to conduct user testing even if the users
do not know anything about user interface design. In contrast, the
responsibility for analyzing the user interface is placed with the
evaluator in a heuristic evaluation session, so a possible observer
only needs to record the evaluator’s comments about the interface,
and does not need to interpret the evaluator’s actions.

Two further differences between heuristic evaluation sessions and
traditional user testing are the willingness of the observer to
answer questions from the evaluators during the session and the
extent to which the evaluators can be provided with hints on using
the interface. For traditional user testing, one normally wants to

157

Usability Engineering

discover the mistakes users make when using the interface, and the
experimenters are therefore reluctant to provide more help than
absolutely necessary. Also, users are requested to discover the
answers to their questions by using the system rather than having
them answered by the experimenter. For the heuristic evaluation of
a domain-specific application, it would be unreasonable to refuse
to answer the evaluators” questions about the domain, especially if
non-domain experts are serving as the evaluators. On the contrary,
answering the evaluators’ questions will enable them to better
assess the usability of the user interface with respect to the charac-
teristics of the domain. Similarly, when evaluators have problems
using the interface, they can be given hints on how to proceed in
order not to waste precious evaluation time struggling with the
mechanics of the interface. It is important to note, however, that the
evaluators should not be given help until they are clearly in trouble
and have commented on the usability problem in question.

Typically, a heuristic evaluation session for an individual evaluator
lasts one or two hours. Longer evaluation sessions might be neces-
sary for larger or very complicated interfaces with a substantial
number of dialogue elements, but it is likely that it would be better
to split up the evaluation in several smaller sessions, each concen-
trating on a part of the interface.

During the evaluation session, the evaluator goes through the
interface several times and inspects the various dialogue elements
and compares them with a list of recognized usability principles.
These heuristics are general rules that seem to describe common
properties of usable interfaces. In addition to the checklist of
general heuristics to be considered for all dialogue elements, the
evaluator obviously is also allowed to consider any additional
usability principles or results that come to mind that may be rele-
vant for any specific dialogue element.

In principle, the evaluators decide on their own how they want to
proceed with evaluating the interface. A general recommendation
would be that they go through the interface at least twice, however.
The first pass would be intended to get a feel for the flow of the
interaction and the general scope of the system. The second pass

158

Usability Heuristics

then allows the evaluator to focus on specific interface elements
while knowing how they fit the larger whole.

Since the evaluators are not using the system as such (to perform a
real task), it is possible to perform heuristic evaluation of user
interfaces that exist on paper only and have not yet been imple-
mented [Nielsen 1990d]. This makes heuristic evaluation suitable
for use early in the usability engineering lifecycle. See Exercise 8 on
page 273 for an example of a heuristic evaluation of a paper mock-
up interface.

If the system is intended as a walk-up-and-use interface for the
general population or if the evaluators are domain experts, it will
be possible to let the evaluators use the system without further
assistance. If the system is domain-dependent and the evaluators
are fairly naive with respect to the domain of the system, it will be
necessary to assist the evaluators to enable them to be able to use
the interface. One approach that has been applied successfully is to
supply the evaluators with a typical usage scenario [Carroll and
Rosson 1990; Clarke 1991; Nielsen 1990d], listing the various steps
a user would take to perform a few realistic tasks. Such a scenario
should be constructed on the basis of a task analysis of the actual
users and their work in order to be as representative as possible of
the eventual use of the system.

The output from using the heuristic evaluation method is a list of
usability problems in the interface, annotated with references to
those usability principles that were violated by the design in each
case in the opinion of the evaluator. Heuristic evaluation does not
provide a systematic way to generate fixes to the usability prob-
lems or a way to assess the probable quality of any redesigns.
However, because heuristic evaluation aims at explaining each
observed usability problem with reference to established usability
principles, it will often be fairly easy to generate a revised design
according to the guidelines provided by the dialogue principle that
was violated. Also, many usability problems have fairly obvious
fixes as soon as they have been identified.

159

Usability Engineering

For example, if the problem is that the user cannot copy informa-
tion from one window to another, then the solution is obviously to
include such a copy feature. Similarly, if the problem is the use of
inconsistent typography in the form of upper- and lower case
formats and fonts, the solution is obviously to pick a single typo-
graphical format for the entire interface. Even so, even for these
simple examples the designer has no information to help design
the exact changes to the interface (for example, how to enable the
user to make the copies or which of the two font formats to stan-
dardize).

One possibility for extending the heuristic evaluation method to
provide some design advice is to conduct a debriefing session after
the last evaluation session [Nielsen 1994b]. The participants in the
debriefing should include the evaluators, any observer used
during the evaluation sessions, and representatives of the design
team. The debriefing session would mostly be conducted in a
brainstorming mode and would focus on discussions of possible
redesigns to address the major usability problems and general
problematic aspects of the design. A debriefing is also a good
opportunity for discussing the positive aspects of the design, since
heuristic evaluation does not otherwise address this important
issue.

Heuristic evaluation is explicitly intended as a “discount usability
engineering” method [Nielsen 1989b, 1990a]. Independent research
[Jeffries et al. 1991] has indeed confirmed that heuristic evaluation
is a very efficient usability engineering method, and one recent
case study found a benefit—ost ratio for a heuristic evaluation
project of 48, with the cost of using the method being about $10,500
and the expected benefits being about $500,000 [Nielsen 1994c]. As
a discount usability engineering method, heuristic evaluation is
not guaranteed to provide “perfect” results or to find every last
usability problem in an interface.

Effect of Evaluator Expertise

As always in computing [Egan 1988], there are major individual
differences between the performance of evaluators in heuristic
evaluation. In eight case studies, the Q3/Q; ratio between the

160

Usability Heuristics

number of usability problems found by the top and bottom quartile
(best 25% versus worst 25%) of the evaluators ranged from 1.4 to
2.2 with a mean of 1.7. These numbers represent cases where evalu-
ators with essentially the same background and qualifications were
compared. There are thus major benefits to be gained if one could
identify people who are good at doing heuristic evaluation as the
evaluators. In one case study [Nielsen and Molich 1990], 34 evalua-
tors with the same background evaluated 2 different user inter-
faces, and the correlation between the number of usability
problems found by individual evaluators in the two systems was
r = .57. This definitely indicates better than random consistency in
the evaluators’ ability to find usability problems (p < .01), but at the
same time also indicates substantial unexplained variability in
performance from one evaluation to the next. Even though it might
be possible to establish a group of “good” evaluators over time by
selecting people who exhibit good performance in several evalua-
tions, this is thus a slow process and will sacrifice performance on
the first several evaluation studies.

In a case study [Nielsen 1992c], the same user interface was
subjected to heuristic evaluation by three groups of evaluators:
usability “novices” with knowledge about computers in general
but no special usability expertise, “single experts” who were
usability specialists but not specialized in the domain of the inter-
face, and “double experts” with expertise in both usability in
general and the kind of interface being evaluated.” The perfor-
mance of the novice evaluators was fairly poor, with each of them
finding an average of 22% of the usability problems in the interface.
The single experts found 41% of the problems each, making them
1.8 times as good as the novices, and the double experts found 60%
each, making them 2.7 times as good as the novices and 1.5 times as
good as the single experts. These results shows that there are
systematic group differences in evaluator performance in addition

9. Logically, the users themselves might have been a fourth group. However,
it is much better to use available users for user testing, since users are
normally not very good at analyzing systems according to abstract principles.
In contrast, users are perfectly suited to using the system, and one can then
observe what actually happens instead of asking the users to guess what
might happen.

161

Usability Engineering

to the individual differences. Even though heuristic evaluation can
be performed by people with little or no usability expertise (which
is an advantage from a discount usability engineering perspective),
it is preferable to use usability specialists as the evaluators, and
optimal performance requires double specialists.

If a sufficient number of usability specialists is not available, one
can consider using technical writers from the documentation and
help groups for heuristic evaluation. The writers have to under-
stand the system anyway, and they have a natural tendency to
knowing when something will be difficult to explain (which prob-
ably would mean that it would be hard to use, too).

Another way of utilizing different kinds of expertise is the plural-
istic usability walkthrough technique [Bias 1991], where the heuristic
evaluation is performed by representative users, product devel-
opers, and usability specialists. Users bring their subject matter
expertise to bear on the evaluation, so this variant of heuristic eval-
uation is especially appropriate when only “single expert”
usability specialists without knowledge of the application domain
are available. Randolph Bias [1991] advocates having the various
evaluators perform the initial evaluation on an individual basis
before the group discussion. Instead of the more traditional
approach where each evaluator evaluates the complete interface
before discussing it, he advocates evaluating a single screen design
at a time, having the full group discuss each screen before the eval-
uators move on to the next screen. This technique may be most
appropriate for the evaluation of traditional character-based, full-
screen interfaces that are clearly divided into distinct screens for
each of the users’ sub-tasks, though many graphical user interfaces
also have distinct dialog boxes that can be inspected one at a time.
During the group discussions, Bias recommends letting the users
present their evaluation results first, in order not to have the
computer specialists dominate the discussion.

One benefit of the pluralistic walkthrough method is that the dual
presence of users and designers allow for preliminary collection of
user input early in the stages of a design. At this stage, manuals,
help systems, and other documentation may not yet be available,

162

Usability Heuristics

and users might not be able to use the system unaided. In a plural-
istic walkthrough session, the system designers can serve as “living
manuals,” allowing the users to ask the questions they would
normally seek answered in the manual.

163

chapters Usability Testing

User testing with real users is the most fundamental usability
method and is in some sense irreplaceable, since it provides direct
information about how people use computers and what their exact
problems are with the concrete interface being tested. Even so, the
methods discussed in other chapters of this book can serve as good
supplements to gather additional information or to gain usability
insights at a lower cost.!

There are several methodological pitfalls in usability testing
[Holleran 1991; Landauer 1988b], and as in all kinds of testing one
needs to pay attention to the issues of reliability and validity. Reli-
ability is the question of whether one would get the same result if
the test were to be repeated, and validity is the question of whether
the result actually reflects the usability issues one wants to test.

1. There is an association of usability professionals that publishes a newsletter
on practical issues related to usability testing and meets at regular intervals to
discuss issues related to usability. For further information about the Usability
Professionals’ Association, contact its office: Usability Professionals” Associa-
tion, 10875 Plano Road, Suite 115, Dallas, TX 75238, USA. Tel. +1-214-349-8841,
fax +1-214-349-7946.

165

Usability Engineering

Reliability

Reliability of usability tests is a problem because of the huge indi-
vidual differences between test users. It is not uncommon to find
that the best user is 10 times as fast as the slowest user, and the best
25% of the users are normally about twice as fast as the slowest
25% of the users [Egan 1988]. Because of this well-established
phenomenon, one cannot conclude much from, say, observing that
User A using Interface X could perform a certain task 40% faster
than User B using Interface Y; it could very well be the case that
User B just happened to be slower in general than User A. If the test
was repeated with Users C and D, the result could easily be the
opposite. For usability engineering purposes, one often needs to
make decisions on the basis of fairly unreliable data, and one
should certainly do so since some data is better than no data. For
example, if a company had to choose between Interfaces X and Y as
just discussed, it should obviously choose Interface X since it has at
least a little bit of evidence in its favor. If several users have been
tested, one could use standard statistical tests? to estimate the
significance of the difference between the systems [Brigham 1989].
Assume, for example, that the statistics package states that the
difference between the systems is significant at the level p = .20.
This means that there is a 20% chance that Y was actually the best
interface, but again one should obviously choose X since the odds
are 4 to 1 that it is best.

Standard statistical tests can also be used to estimate the confidence
intervals of test results and thus indicate the reliability of the size of
the effects. For example, a statistical claim that the 95% confidence
interval for the time needed to perform a certain test task is
4.5 £ 0.2 minutes means that there is a 95% probability that the true
value is between 4.3 and 4.7 (and thus a 5% probability that it is
really smaller than 4.3 or larger than 4.7). Such confidence intervals
are important if the choice between two options is dependent not

2. Statistics is of course a topic worthy of several full books in its own right.
See, for example, [Pedhazur and Schmelkin 1991] for basic methods, and
[Lehmann and D’Abrera 1975] for more specialized statistical tests. An intro-
duction to the use of statistics in the user interface field is given in Section 42.5
of [Landauer 1988b].

166

Usability Testing

just on which one is best but also on how much better it is [Land-
auer 1988a, 1988b]. For example, a usability problem that is very
expensive to fix should only be fixed if one has a reasonably tight
confidence interval showing that the problem is indeed sufficiently
bothersome to the users to justify the cost.

In a survey of 36 published usability studies, I found that the mean
standard deviation was 33% for measures of expert-user perfor-
mance (measured in 17 studies), 46% for measures of novice-user
learning (measured in 12 studies), and 59% for error rates
(measured in 13 studies). In all cases, the standard deviations are
expressed as percent of the measured mean value of the usability
attribute in question. These numbers can be used to derive early
approximations of the number of test users needed to achieve a
desired confidence interval. Of course, since standard deviations
vary a great deal between studies, any particular usability test
might well have a higher or lower standard deviation than the
values given here, and one should perform further statistical tests
on the actual data measured in the study.

Anyway, the results show that error rates tend to have the highest
variability, meaning that they will generally require more test users
to achieve the same level of confidence as can be achieved with
fewer test users for measures of learnability and even fewer for
measures of expert user performance. Figure 17 shows the confi-
dence intervals for several possible desired levels of confidence
from 50% to 90% in steps of 10%, as well as for 95%, assuming that
the underlying usability measures follow a normal distribution. A
confidence level of 95% is often used for research studies, but for
practical development purposes, it may be enough to aim for an
80% level of confidence (the third curve from the top in each of the
three nomographs).

The values on the y-axis should be interpreted as follows: The
confidence interval (corresponding to the confidence level of one of
the curves) is plus or minus that many percent of the measured
mean value of the usability attribute. For example, assume that we
are interested in measuring expert-user performance well enough
that there is a 90% chance that the true value is no more than 15%

167

Usability Engineering

T

S 50% .

E \\ Standard deviation of 33%

8 40% 41—\ (expert-user performance)

c 9 |

52 30% J

:Qk . \

€ 9 oo &\\ s e % Confidence -
20% ~ 95% Confidence

80\0 \\\\\ -\\

\

S 10% gy

S o%lGConfidence - T

< 0 5 10 15 20 25

" Number of Test Users

3

S 50% ‘ —

kS | \\\ Standard deviation of 46%

8‘5?40% \\ AN (novice-user learning) ~ —

SO | N\ |

TS 30% k

g% e \}& P e R 95% Confidence

S 20% - —

I e S e

2 Y77 Confidence

SR v T SIS ENEIREI SR R

= 0 5 10 15 20 25

Number of Test Users

IS
S 50% ‘ Lo
IS 1 \\\\ Standard deviation of 59%
o = 40% (user error rates) —
oS

& 4 ,
§§' 30% \\\\\\\ | 95% Confidence |
o N v O | |
S« 20% e e
&} ° — |
S8 10%]—— Confidence\é\\
s]
R) v T DGAE W1 NI I U SEN S
< 0 5 10 15 20 25

Number of Test Users

Figure 17 Confidence intervals for usability testing from 1 to 25 users.
Graphs for three different typical levels of standard deviations of the mean
measured value. In each graph, the bottom curve is the 50% confidence
level, followed by curves for 60%, 70%, 80%, 90%, and 95% (the top
curve). The stippled lines in the top graph are discussed in the text.

168

Usability Testing

different from the mean value measured in our usability test. To
find the necessary number of test users, we would start at the 15%
mark on the y-axis in the top diagram in Figure 17 (corresponding
to the desired length of the interval) and find the corresponding
point on the 90% confidence level curve. We would then drop a line
from that point to the x-axis to find the necessary number of test
users (about 13). The diagram also shows that 5 test users would
give us only a 70% probability of getting within +15% of the true
mean and that our 90% confidence interval would be +24%. This
level of accuracy might be enough for many projects.

Validity

Validity is a question of whether the usability test in fact measures
something of relevance to usability of real products in real use
outside the laboratory. Whereas reliability can be addressed with
statistical tests, a high level of validity requires methodological

understanding of the test method one is using as well as some
common sense.

Typical validity problems involve using the wrong users or giving
them the wrong tasks or not including time constraints and social
influences. For example, a management information system might
be tested with business school students as test users, but it is likely
that the results would have been somewhat different if it had been
tested with real managers. Even so, at least the business school
students are people who likely will become managers, so they are
probably more valid test users than, say, chemistry students. Simi-
larly, results from testing a hypertext system with a toy task
involving a few pages of text may not always be relevant for the
use of the system in an application with hundreds of megabytes of
information.

Confounding effects may also lower the validity of a usability test.
For example, assume that you want to investigate whether it
would be worthwhile to move from a character-based user inter-
face to a graphical user interface for a certain application. You test
this by comparing two versions of the system: one running on a
24 x 80 alphanumeric screen and one running on a 1024 x 1024
pixel graphics display. At a first glance, this may seem a reasonable

169

Usability Engineering

test to answer the question, but more careful consideration shows
that the comparison between the two screens is as much a compar-
ison between large and small screens as it is between character-
based and graphical user interfaces.

6.1 Test Goals and Test Plans

Before any testing is conducted, one should clarify the purpose of
the test since it will have significant impact on the kind of testing to
be done. A major distinction is whether the test is intended as a
formative or summative evaluation of the user interface. Formative
evaluation is done in order to help improve the interface as part of
an iterative design process. The main goal of formative evaluation
is thus to learn which detailed aspects of the interface are good and
bad, and how the design can be improved. A typical method to use
for formative evaluation is a thinking-aloud test. In contrast,
summative evaluation aims at assessing the overall quality of an
interface, for example, for use in deciding between two alternatives
or as a part of competitive analysis to learn how good the competi-
tion really is.® A typical method to use for summative evaluation is
a measurement test.

Test Plans

A test plan should be written down before the start of the test and
should address the following issues:

* The goal of the test: What do you want to achieve?

* Where and when will the test take place?

* How long is each test session expected to take?

* What computer support will be needed for the test?

* What software needs to be ready for the test?

* What should the state of the system be at the start of the test?

3. Remember, by the way, that manual or paper-based solutions that do not
involve computers at all are also in the running and should be studied as well.

170

Usability Testing

¢ What should the system/network load and response times be? If
possible, the system should not be unrealistically slow (see the
discussion of prototyping in Section 4.8), but neither should it be
unrealistically fast because it is run on a system or network with
no other users. One may have to artificially slow down the
system to simulate realistic response times.

* Who will serve as experimenters for the test?

* Who are the test users going to be, and how are you going to get
hold of them?

* How many test users are needed?
* What test tasks will the users be asked to perform?

e What criteria will be used to determine when the users have
finished each of the test tasks correctly?

¢ What user aids (manuals, online help, etc.) will be made avail-
able to the test users?

* To what extent will the experimenter be allowed to help the users
during the test?

¢ What data is going to be collected, and how will it be analyzed
once it has been collected?

* What will the criterion be for pronouncing the interface a
success? Often, this will be the “planned” level for the previously
specified usability goals (see page 80), but it could also be a
looser criterion such as “no new usability problems found with
severity higher than 3.”

Test Budget

The test plan should also include a budget for the test. Some costs
will be out-of-pocket, meaning that they have to be paid cash.
Other costs are in the nature of using company staff and resources
that are already paid for. Such indirect costs may or may not be
formally charged to the usability budget for the specific project,
depending on how the company’s accounting mechanisms are set
up, but they should be included in the usability manager’s internal
budget for the test in any case. Typical cost elements of a user test
budget are

¢ Usability specialists to plan, run, and analyze the test: out-of-
pocket expense if consultants are used

171

Usability Engineering

¢ Administrative assistants to schedule test users, enter data, etc.
* Software developers to modify the code to include data collec-
tion or other desired test customization

* The test users’” time: out-of-pocket expense if outside people are
hired for the test

* Computers used during testing and during analysis
* The usability laboratory or other room used for the test
* Videotapes and other consumables: out-of-pocket expense

The cost estimates for the various staff members should be based
on their loaded salary and not on their nominal salary. A loaded
salary is the total cost to the company of having a person employed
and includes elements like benefits, vacation pay, employment
taxes or fees, and general corporate overhead.

The test budget should be split into fixed and variable costs, where
fixed costs are those required to plan and set up the test no matter
how many test users are run, and variable costs are the additional
costs needed for each test user. Splitting the cost estimates in this
way allows for better planning of the number of test users to
include for each test. Obviously, both fixed and variable costs vary
immensely between projects, depending on multiple factors such
as the size of the interface and the salary level of the intended
users. Based on several published budgets, estimates for a repre-
sentative, medium-sized usability test can be derived, with fixed
costs of $3,000 and variable costs of $1,000 per test user [Nielsen
and Landauer 1993]. Note that any specific project is likely to have
different costs than these estimates.

Given estimates for fixed and variable costs, it then becomes
possible to calculate the optimal number of test users if further
assumptions are made about the financial impact of finding
usability problems and the probability of finding each problem
with a single test user. Unfortunately, these latter two numbers are
much harder to estimate than the costs of testing, but any given
organization should be able to build up a database of typical values
over time. Again based on values from published studies, a repre-
sentative value of finding a usability problem in a medium-sized
project can be taken as $15,000.

172

Usability Testing

Nielsen and Landauer [1993] showed that the following formula
gives a good approximation of the finding of usability problems:

Usability_Problems_Found(i) = N(1 - (1 - 4)),

where i is the number of test users, N is the total number of
usability problems in the interface, and A is the probability for
finding any single problem with any single test user. The values of
N and A vary considerably between projects and should be esti-
mated by curve-fitting as data becomes available for each project. It
is also recommended that you keep track of these numbers for your
own projects such that you can estimate “common” values of these
parameters for use in the planning of future tests.

For several projects we studied, the mean number of problems in
the interface, N, was 41 and the mean probability for finding any
problem with a single user, A, was 31% [Nielsen and Landauer
1993]. The following discussion uses these mean values to illustrate
the use of the mathematical model in the budgeting of usability
activities. Of course, one should really use the particular N and A
values that have been measured or estimated for the particular
project one wants to analyze.

Given the assumptions mentioned above, Figure 18 shows how the
pay-off ratio between the benefits and the costs changed in our
average example with various numbers of test users. The highest
ratio was achieved with three test users, where the projected bene-
fits were $413,000, and the costs were $6,000. However, in prin-
ciple, one should keep testing as long as the benefit from one
additional test user is greater than the cost of running that user.
Under the above model, this would imply running 15 test users at a
cost of $18,000 to get benefits worth $613,000. If the recommenda-
tion in Section 4.10 to use iterative design is followed, it will be
better to conduct more, smaller, tests (one for each iteration) than to
spend everything on a single test.

173

Usability Engineering

~
(6]

!

1

(&)
o
~N

Ratio of Benefits to Cost
N
[,

0 T T T T T T T T
0 3 6 9 12
Number of Test Users

Figure 18 The pay-off ratio (how much larger the benefits are than the
costs) for user tests with various niimbers of test users under the assump-
tions for a “typical” medium-sized project described in the text.

Pilot Tests

No usability testing should be performed without first having tried
out the test procedure on a few pilot subjects. Often, one or two
pilot subjects will be enough, but more may be needed for large
tests or when the initial pilot tests show severe deficiencies in the
test plan. The first few pilot subjects may be chosen for conve-
nience among people who are easily available to the experimenter
even if they are not representative of the actual users, since some
mistakes in the experimental design can be found even with
subjects such as one’s colleagues. Even so, at least one pilot subject
should be taken from the same pool as the other test users.

During pilot testing, one will typically find that the instructions for
some of the test tasks are incomprehensible to the users or that they
misinterpret them. Similarly, any questionnaires used for subjec-
tive satisfaction rating or other debriefing will often need to be
changed based on pilot testing. Also, one very often finds a
mismatch between the test tasks and the time planned for each test

174

Usability Testing

session. Most commonly, the tasks are more difficult than one
expected, but of course it may also be the case that some tasks are
too easy. Depending on the circumstances of the individual project,
one will either have to revise the tasks or make more time available
for each test session.

Pilot testing can also be used to refine the experimental procedure
and to clarify the definitions of various things that are to be
measured. For example, it is often difficult to decide exactly what
constitutes a user error or exactly when the user can be said to have
completed a given test task, and the pilot test may reveal inconsis-
tencies or weaknesses in the definitions contained in the test plan.

6.2 Getting Test Users

The main rule regarding test users is that they should be as repre-
sentative as possible of the intended users of the system. If the test
plan calls for a “discount usability” approach with very few test
users, one should not choose users from outlier groups but should
take additional care to involve average users. If more test users are
to be used, one should select users from several different subpopu-
lations to cover the main different categories of expected users.

The main exception from the rule that test users should be repre-
sentative of the end users is testing with sales people. For many
products, sales staff is used to give demonstrations to prospective
customers, and the ease with which they can give these demos may
be a major selling point. Often, sales people handle multiple prod-
ucts and do not get extensive experience from actual use of any
individual product. The experience of demonstrating a user inter-
face is very different from that of actually using it for a real task,
and even though most usability efforts should aim at making the
system easier to use for the users, it may increase sales significantly
if “demoability” is also considered as a usability attribute.

Sometimes, the exact individuals who will be using a system can
be identified. This is typically the case for systems that are being
developed internally in a company for use in a given department

175

Usability Engineering

of that company. In this case, representative users are easy to find,
even though it may present some difficulties to get them to spend
time on user testing instead of doing their primary job. Internal test
users are often recruited through the users’ management who
agrees to provide a certain number of people. Unfortunately,
managers often tend to select their most able staff members for
such tests (either to make their department look good or because
these staff members have the most interest in new technology), so
one should explicitly ask managers to choose a broad sample with
respect to salient user characteristics such as experience and
seniority.

In other cases, the system is targeted at a certain type of users, such
as lawyers, the secretaries in a dental clinic, or warehouse
managers in small manufacturing companies. These user groups
can be more or less homogeneous, and it may be desirable to
involve test users from several different customer locations. Some-
times, existing customers are willing to help out with the test since
it will get them an early look at new software as well as improving
the quality of the resulting product, which they will be using. In
other cases, no existing customers are available, and it may be
more difficult to gain access to representative users. Sometimes,
test users can be recruited from temporary employment agencies,
or it may be possible to get students in the domain of interest from
a local university or trade school. It may also be possible to enter a
classified advertisement under job openings in order to recruit
users who are currently unemployed. Of course, it will be neces-
sary to pay all users recruited with these latter methods.

Yet other software is intended for the general population, and one
can in principle use anybody as test users, again using employ-
ment agencies, students, or classified advertising to recruit test
users. Especially when testing students, one should consider
whether the system is also intended to be used by older users, since
they may have somewhat different characteristics [Czaja et al. 1989;
Nielsen and Schaefer 1993] and may therefore need to be included
as an additional test group. A good source of older test users is
retirees, who may also serve as a pool of talent with specific
domain expertise.

176

Usability Testing

Novice versus Expert Users

One of the main distinctions between categories of users is that
between novice and expert users (see also Section 2.5, Categories of
Users and Individual User Differences, on page 43 for further dimen-
sions of interest). Almost all user interfaces need to be tested with
novice users, and many systems should also be tested with expert
users. Typically, these two groups should be tested in separate tests
with some of the same and some different test tasks.

Sometimes, one will have to train the users with respect to those
aspects of a user interface that are unfamiliar to them but are not
relevant for the main usability test. This is typically necessary
during the transition from one interface generation to the next,
where users will have experience with the old interaction tech-
niques but will be completely baffled by the new ones unless they
are given some training. For example, a company that is moving
from character-based interfaces to graphical user interfaces will
have many users who have never used a mouse before, and these
users will have to be trained in the use of the mouse before it is
relevant to use them as test users of a mouse-based system. Using a
mouse is known to be hard for the first several hours, and it is
almost impossible to use a mouse correctly the first few minutes. If
users are not trained in the use of the mouse and other standard
interaction techniques before they are asked to test a new interface,
the test will be completely dominated by the effects of the users’
struggle with the interaction devices and techniques, and no infor-
mation will be gained as to the usability of the dialogue.

One example of the potentially devastating effect of not training
users before a test was a study of the use of a single window versus
multiple windows for an electronic book [Tombaugh et al. 1987].
When novice users without any specific training were used as test
subjects, the single-window interface was best for reading the elec-
tronic book. The time needed to answer questions about the text
was 85 seconds when using the multiwindow interface and 72
seconds when using the single-window interface. In a second test,
the test users were first given 30 minutes’ training in the use of a
mouse to control multiple windows, and the time to answer the
questions about the text was now 66 seconds for the single-

177

Usability Engineering

window interface and only 56 seconds for the multiwindow inter-
face. Thus, both interfaces benefited from having more experienced
users, but the most interesting result is that the overall conclusion
with respect to determining the “winner” of the test came out the
opposite. The single-window solution would be best for a “walk-
up-and-use” system for users without prior mouse experience. On
the other hand, the multiwindow solution would be best in the
more common case-where the electronic book was to be used in an
office or school environment where people would be using the
same computer extensively. For such environments, the wrong
conclusion would have been drawn if a test with untrained users
had been the only one.

Between-Subjects versus Within-Subjects Testing

Often, usability testing is conducted in order to compare the
usability of two or more systems. If so, there are two basic ways of
employing the test users: between-subject testing and within-subject
testing.

Between-subject testing is in some sense the simplest and most
valid since it involves using different test users for the different
systems. Thus, each test user only participates in a single test
session. The problem with between-subject designs is the huge
individual variation in user skills referred to on page 166. There-
fore, it can be necessary to run a very large number of test users in
each condition in order to smooth over random differences
between test users in each of the groups.

Between-subject testing also risks a bias due to the assignment of
test users to the various groups. For example, one might decide to
test 20 users, call for volunteers, and assign the first 10 users to one
system and the next 10 to the other. Even though this approach
may seem reasonable, it in fact introduces a bias, since users who
volunteer early are likely to be different from users who volunteer
late. For example, early volunteers may be more conscientious in
reading announcements, or they may be more interested in new
technology, and thus more likely to be super-users. There are two
methodologically sound ways to assign test users to groups: The
simplest and best is random assignment, which minimizes the risk

178

Usability Testing

of any bias but requires a large number of test users because of
individual variability. The second method is matched assignment,
which involves making sure that each group has equally many
users from each of those categories that have been defined as being
of interest to the test. For example, users from different depart-
ments might be considered different categories, as may old versus
young users, men versus women, and users with different
computer experience or different educational backgrounds.

Alternatively, one may conduct the test as a within-subject design,
meaning that all the test users get to use all the systems that are
being tested. This method automatically controls for individual
variability since any user who is particularly fast or talented will
presumably be about equally superior in each test condition.
Within-subject testing does have the major disadvantage that the
test users cannot be considered as novice users anymore when they
approach the other systems after having learned how to use the
first system. Often, some transfer of skill will take place between
systems, and the users will be better at using the second system
than they were at using the first. In order to control for this effect,
users are normally divided into groups, with one group using one
system first and the other group using the other system first. The
issues discussed above regarding the assignment of users to groups
also apply to this aspect of within-subject testing.

6.3 Choosing Experimenters

No matter what test method is chosen, somebody has to serve as
the experimenter and be in charge of running the test. In general, it
is of course preferable to use good experimenters who have
previous experience in using whatever method is chosen. For
example, a study where 20 different groups of experimenters tested
the same interface, there was a correlation of r = .76 between the
rated quality of the methodology used by a group and the number
of usability problems they discovered in the interface [Nielsen
1992a]. When running 3 test subjects, experimenters using very

179

Usability Engineering

good methodology found about 5-6 of the 8 usability problems in
the interface, and experimenters using very poor methodology
only found about 2-3 of the problems.

This result does not mean that one should abandon user testing if
no experienced usability specialist is available to serve as the
experimenter. First, it is obviously better to find a few usability
problems than not to find any, and second, even inexperienced
experimenters can use a decent (if not perfect) methodology if they
are careful. It is possible for computer scientists to learn user test
methods and apply them with good results [Nielsen 1992a; Wright
and Monk 1991].

In addition to knowledge of the test method, the experimenter
must have extensive knowledge of the application and its user
interface. System knowledge is necessary for the experimenter to
understand what the users are doing as they perform tasks with
the system, and to make reasonable inferences about the users’
probable intentions at various stages of the dialogue. Often, users’
actions will go by too fast for experimenters, who are trying to
understand what the system is doing at the same time as they are
analyzing the users.

The experimenter does not necessarily need to know how the
system is implemented, even though such knowledge can come in
handy during tests of preliminary prototypes with a tendency to
crash. If the experimenter does not know how to handle system
crashes, it is a good idea to arrange to have a programmer with the
necessary skills stand by in a nearby office.

One way to get experimenters with a high degree of system knowl-
edge is to use the system’s designers themselves as evaluators
[Wright and Monk 1991]. In addition to the practical advantages,
there are also motivational reasons for doing so, since the experi-
ence of seeing users struggle with their system always has a very
powerful impact on designers [Jorgensen 1989]. There are some
problems with having people run tests of their own systems,
though, including a possible lack of objectivity that may lead them
to help the users too much (see also the footnote on page 204). A

180

Usability Testing

common weakness is the tendency for a designer to explain away
user problems rather than acknowledging them as real issues. To
avoid these problems, developers can serve as one part of the
usability testing team while usability specialists handle relations
with the users [Ehrlich et al. 1994].

6.4 Ethical Aspects of Tests with
Human Subjects

Users are human, too. Therefore, one cannot subject them to the
kind of “destructive testing” that is popular in the components
industry. Instead, tests should be conducted with deep respect for
the users’ emotions and well-being [Allen 1984; American Psycho-
logical Association 1982].

At first, it might seem that usability testing does not represent the
same potential dangers to the users as would, say, participation in a
test of a new drug. Even though it is true that usability test subjects
are not normally bodily harmed, even by irate developers
resenting the users’ mistreatment of their beloved software, test
participation can still be quite a distressful experience for the users
[Schrier 1992]. Users feel a tremendous pressure to perform, even
when they are told that the purpose of the study is to test the
system and not the user. Also, users will inevitably make errors
and be slow at learning the system (especially during tests of early
designs with many severe usability problems), and they can easily
get to feel inadequate or stupid as they experience these difficul-
ties. Knowing that they are observed, and possibly recorded,
makes the feeling of performing inadequately even more
unpleasant to the users. Test users have been known to break down
and cry during usability testing, even though this only happens in
a small minority of cases.

At first, one might think that highly educated and intelligent users
would have enough self-confidence to make fear of inadequacy

181

Usability Engineering

less of a problem. On the contrary, high-level managers and highly
specialized professionals are often especially concerned about
exhibiting ignorance during a test. Therefore, experimenters
should be especially careful to acknowledge the professional skills
of such users up front and emphasize the need to involve people
with these users’ particular knowledge in the test.

The experimenter has a responsibility to make the users feel as
comfortable as possible during and after the test. Specifically, the
experimenter must never laugh at the users or in any way indicate
that they are slow at discovering how to operate the system.
During the introduction to the test, the experimenter should make
clear that it is the system that is being tested and not the user. To
emphasize this point, test users should never be referred to as
“subjects,” “guinea pigs,” or other such terms. I personally prefer
the term “test user,” but some usability specialists like to use terms
such as “usability evaluator” or “participant,” which emphasize
even more that it is the system that is being tested. Since the term
“evaluator” technically speaking refers to an inspection-oriented
role where usability specialists judge a system instead of using it to
perform a task, I normally do not use this term myself when refer-
ring to test users.

The users should be told that no information about the perfor-
mance of any individual users will be revealed and specifically that
their manager will not be informed about their performance. The
test itself should be conducted in a relaxed atmosphere, and the
experimenter should take the necessary time for small talk to calm
down the user before the start of the experiment, as well as during
any breaks. It might also be a good idea to serve coffee, soft drinks,
or other refreshments—especially if the test takes more than an
hour or so. Furthermore, to bolster the users’ confidence and make
them at ease, the very first test task should be so easy that they are
virtually guaranteed an early success experience.

The experimenter should ensure that the test room, test computer,
and test software are ready before the test user arrives in order to
avoid the confusion that would otherwise arise due to last-minute
adjustments. Also, of course, copies of the test tasks, any question-

182

Usability Testing

naires, and other test materials should be checked before the
arrival of the user such that they are ready to be handed out at the
appropriate time. The test session should be conducted without
disruptions: typically, one should place a sign saying, “User test in
progress—Do not disturb” outside the (closed) door and disable any
telephone sets in the test room.

The test results should be kept confidential, and reports from the
test should be written in such a way that individual test users
cannot be identified. For example, users can be referred to by
numbers (Userl, User2, etc.) and not by names or even initials.?
The test should be conducted with as few observers as possible,
since the size of the “audience” also has a detrimental effect on the
test user: It is less embarrassing to make a fool of yourself in front
of 1 person than in front of 10. And remember that users will think
that they are making fools of themselves as they struggle with the
interface and overlook “obvious” options, even if they only make
the same mistakes as everybody else. For similar reasons, video-
tapes of a user test session should not be shown publicly without
explicit permission from the user. Also, the users” manager should
never be allowed to observe the test for any reason and should not
be given performance data for individual users.

During testing, the experimenter should normally not interfere
with the user but should let the user discover the solutions to the
problems on his or her o Not only does this lead to more valid
and interesting test results,” it also prevents the users from feeling
that they are so stupid that the experimenter had to solve the prob-
lems for them. On the other hand, the experimenter should not let a
user struggle endlessly with a task if the user is clearly bogged
down and getting desperate. In such cases, the experimenter can

4. Ensuring anonymity requires a fair amount of thought. For example, a
report of a test with users drawn from a department with only one female staff
member referred to all users as “he,” even when describing observations of
the woman since her anonymity would otherwise have been compromised.

5. Itis a common mistake to help users too early. Since users normally do not
get help when they have to learn a computer system on their own, there is
highly relevant information to be gained from seeing what further difficulties
users get into as they try to solve the problem on their own.

183

Usability Engineering

Before the test:

Have everything ready before the user shows up.

Emphasize that it is the system that is being tested, not the user.
Acknowledge that the software is new and untested, and may have problems.
Let users know that they can stop at any time.

Explain any recording, keystroke logging, or other monitoring that is used.

Tell the user that the test results will be kept completely confidential.

Make sure that you have answered all the user’s questions before proceeding.

During the test:

Try to give the user an early success experience.

Hand out the test tasks one at a time.

Keep a relaxed atmosphere in the test room, serve coffee and/or have breaks.
Avoid disruptions: Close the door and post a sign on it. Disable telephone.
Never indicate in any way that the user is making mistakes or is too slow.
Minimize the number of observers at the test.

Do not allow the user’'s management to observe the test.

If necessary, have the experimenter stop the test if it becomes too unpleasant.

After the test:

End by stating that the user has helped you find areas of improvement.
Never report results in such a way that individual users can be identified.
Only show videotapes outside the usability group with the user’s permission.

Table 9 Main ethical considerations for user testing.

gently provide a hint or two to the user in order to get on with the
test. Also, the experimenter may have to terminate the test if the
user is clearly unhappy and unable to do anything with the system.
Such action should be reserved for the most desperate cases only.
Furthermore, test users should be informed before the start of the
test that they can always stop the test at any time, and any such
requests should obviously be honored.

After the test, the user should be debriefed and allowed to make
comments about the system. After the administration of the ques-
tionnaire (if used), any deception employed in the experiment
should be disclosed in order not to have the user leave the test with
an erroneous understanding of the system. An example of a decep-
tion that should be disclosed is the use of the Wizard of Oz method
(see page 96) to simulate nonexisting computer capabilities. Also,
the experimenter can answer any additional user questions that

184

Usability Testing

could not be answered for fear of causing bias until after the user
had filled in the questionnaire. The experimenter should end the
debriefing by thanking the user for participating in the test and
explicitly state that the test helped to identify areas of possible
improvement in the product.® This part of the debriefing helps
users recover their self-respect after the many errors they probably
felt they made during the test itself. Also, the experimenter should
endeavor to end the session on a positive and relaxed note,
repeating that the results are going to be kept confidential and also
engaging in some general conversation and small talk as the user is
being escorted out of the building or laboratory area.

Table 9 summarizes the most important ethical considerations for
user testing. In addition to following the rules outlined here, it is a
good idea for the experimenters to have tried the role of test
subjects themselves a few times, so that they know from personal
experience how stupid and vulnerable subjects may feel.

6.5 Test Tasks

The basic rule for test tasks is that they should be chosen to be as
representative as possible of the uses to which the system will
eventually be put in the field. Also, the tasks should provide
reasonable coverage of the most important parts of the user inter-
face. The test tasks can be designed based on a task analysis or
based on a product identity statement listing the intended uses for
the product. Information from logging frequencies of use of
commands in running systems (see page 217) and other ways of
learning how users actually use systems, such as field observation,
can also be used to construct more representative sets of test tasks
for user testing of similar systems [Gaylin 1986].

6. However, it may also be necessary to mention that the development team
will not necessarily be able to correct all identified problems. Users can get
very disappointed if they find that the system is released with one of “their”
problems still in the interface in spite of a promise to correct it.

185

Usability Engineering

The tasks need to be small enough to be completed within the time
limits of the user test, but they should not be so small that they
become trivial. The test tasks should specify precisely what result
the user is being asked to produce, since the process of using a
computer to achieve a goal is considerably different from just
playing around. For example, a test task for a spreadsheet could be
to enter sales figures for six regions for each of four quarters, with
some sample numbers given in the task description. A second test
task could then be to obtain totals and percentages, and a third
might be to construct a bar chart showing trends across regions.
Test tasks should normally be given to the users in writing. Not
only does this ensure that all users get the tasks described the same
way, but having written tasks also allows the user to refer to the
task description during the experiment instead of having to
remember all the details of the task. After the user has been given
the task and has had a chance to read it, the experimenter should
allow the user to ask questions about the task description, in order
to minimize the risk that the user has misinterpreted the task.
Normally, task descriptions are handed to the user on a piece of
paper, but they can also be shown in a window on the computer.
This latter approach is usually chosen in computer-paced tests
where users have to perform a very large number of tasks.

Test tasks should never be frivolous, humorous, or offensive, such
as testing a paint program by asking the user to draw a mustache
on a scanned photo of the President. First, there is no guarantee
that everybody will find the same thing funny, and second, the
nonserious nature of such tasks distracts from the test of the system
and may even demean the users. Instead, all test tasks should be
business-oriented (except, of course, for tests of entertainment soft-
ware and such) and as realistic as possible. To increase both the
users’ understanding of the tasks and their sense of being realistic
usage of the software, the tasks can be related to an overall
scenario. For example, the scenario for the spreadsheet example
mentioned above could be that the user had just been hired as sales
manager for a company and had been asked to give a presentation
the next day.

186

Usability Testing

The test tasks can also be used to increase the user’s confidence.
The very first test task should always be extremely simple in order
to guarantee the user an early success experience to boost morale.
Similarly, the last test task should be designed to make users feel
that they have accomplished something. For example, a test of a
word processor could end with having the user print out a docu-
ment. Since users will feel inadequate if they do not complete all
the given tasks, one should never give the users a complete listing
of all the test tasks in advance. Rather, the tasks should be given to
the users one at a time such that it is always possible to stop the test
without letting the user feel incompetent.

6.6 Stages of a Test

A usability test typically has four stages:

—

Preparation
2. Introduction
3. The test itself
4. Debriefing

Preparation

In preparation for the experiment, the experimenter should make
sure that the test room is ready for the experiment, that the
computer system is in the start state that was specified in the test
plan, and that all test materials, instructions, and questionnaires
are available. For example, all files needed for the test tasks should
be restored to their original content, and any files created during
earlier tests should be moved to another computer or at least
another directory. In order to minimize the user’s discomfort and
confusion, this preparation should be completed before the arrival
of the user. Also, any screen savers should be switched off, as
should any other system components, such as email notifiers, that
might otherwise interrupt the experiment.

187

Usability Engineering

Introduction

During the introduction, the experimenter welcomes the test user
and gives a brief explanation of the purpose of the test. The experi-
menter may also explain the computer setup to users if it is likely
to be unfamiliar to them. The experimenter then proceeds with
introducing the test procedure. Especially for inexperienced exper-
imenters, it may be a good idea to have a checklist at hand with the
most important points to be covered, but care should be taken not
to make the introduction seem mechanical, as could easily be the
case if the experimenter were to simply read from the checklist.

Typical elements to cover in a test introduction include the
following:

* The purpose of the test is to evaluate the software and not the
user.

* Unless the experimenter is actually the system designer, the
experimenter should mention that he or she has no personal
stake in the system being evaluated, so that the test user can
speak freely without being afraid of hurting the experimenter’s
feelings. If the experimenter did design the system, this fact is
probably better left unsaid in order to avoid the opposite effect.

* The test results will be used to improve the user interface, so the
system that will eventually be released will likely be different
from the one seen in the test.

* A reminder that the system is confidential and should not be
discussed with others. Even if the system is not confidential, it
may still be a good idea to ask the test user to refrain from
discussing it with colleagues who may be participating in future
tests, in order not to bias them.

* A statement that participation in the test is voluntary and that
the user may stop at any time.

7. Even though this may not need to be mentioned explicitly in the experi-
menter’s introduction, users who do elect to stop the experiment should still
get whatever payment was promised for the time they have spent, even if they
did not complete the experiment, and even if the data from their participation
cannot be used.

188

Usability Testing

¢ Areassurance that the results of the test will be kept confidential
and not shown to anybody in a form where the individual test
user can be identified.

e An explanation of any video or audio recording that may be
taking place. In cases where the video record will not be showing
the user’s face anyway, but only the screen and keyboard and the
user’s back, it is a good idea to mention this explicitly to alleviate
the user’s worries about being recorded.

* An explanation that the user is welcome to ask questions since
we want to know what they find unclear in the interface, but that
the experimenter will not answer most questions during the test
itself, since the goal of the test is to see whether the system can be
used without outside help.

* Any specific instructions for the kind of experiment that is being
conducted, such as instructions to think out loud or to work as
fast as possible while minimizing mistakes.

* An invitation to the user to ask any clarifying questions before
the start of the experiment.

Many people have the test users sign an informed consent form
that repeats the most important instructions and experimental
conditions and states that they have understood them. I do not like
these forms since they can increase the user’s anxiety level by
making the test seem more foreboding than it really is. Sometimes,
consent forms may be required for legal reasons, and they should
certainly be used in cases where videotapes or other records or
results from the test will be shown to others. In any case, it is
recommended to keep any such forms short, to the point, and
written in everyday language rather than legalese, so that the users
do not fear that they are being entrapped to sign away more rights
than they actually are.

During the introduction phase, the experimenter should also
ensure that the physical set-up of the computer is ergonomically
suited for the individual test user. A common problem is the posi-
tion of the mouse for left-handed users, but it may also be neces-
sary to adjust the chair or other parts of the room such that the user
feels comfortable. If the actual computer model is unfamiliar to the
user, it may be a good idea to let the user practice using some other

189

Usability Engineering

software before the start of the test itself, to avoid contaminating
the test results with the user’s initial adjustments to the hardware.

After the introduction, the user is given any written instructions for
the test, including the first test task, and asked to read them. The
experimenter should explicitly ask the test user whether he or she
has any questions regarding the experimental procedure, the test
instructions, or the tasks before the start of the test.

Running the Test

During the test itself, the experimenter should normally refrain
from interacting with the user, and should certainly not express
any personal opinions or indicate whether the user is doing well or
poorly. The experimenter may make uncommitted sounds like
“uh-huh” to acknowledge comments from the user and to keep the
user going, but again, care should be taken not to let the tone of
such sounds indicate whether the user is on the right track or has
just made a ridiculous comment. Also, the experimenter should
refrain from helping the test user, even if the user gets into quite
severe difficulties.

The main exception from the rule that users should not be helped is
when the user is clearly stuck and is getting unhappy with the situ-
ation. The experimenter may also decide to help a user who is
encountering a problem that has been observed several times
before with previous test users. The experimenter should only do
so if it is clear beyond any doubt from the previous tests what the
problem is and what different kinds of subsequent problems users
may encounter as a result of the problem in question. It is tempting
to help too early and too much, so experimenters should exercise
caution in deciding when to help. Also, of course, no help can be
given during experiments aiming to time users’ performance on a
task.

In case several people are observing the experiment, it is important
to have appointed one of them as the official experimenter in
advance and only have that one person provide instructions and
speak during the experiment. In order not to confuse the user, all
other observers should keep completely quiet, even if they do not

190

Usability Testing

agree with the way the experimenter is running the experiment. If
they absolutely need to make comments, they can do so by unob-
trusively passing the experimenter a note or talking with the exper-
imenter during a break.

Debriefing

After the test, the user is debriefed and is asked to fill in any subjec-
tive satisfaction questionnaires. In order to avoid any bias from
comments by the experimenter, questionnaires should be adminis-
tered before any other discussion of the system. During debriefing,
users are asked for any comments they might have about the
system and for any suggestions they may have for improvement.
Such suggestions may not always lead to specific design changes,
and one will often find that different users make completely
contradictory suggestions, but this type of user suggestion can
serve as a rich source of additional ideas to consider in the rede-

sign.

The experimenter can also use the debriefing to ask users for
further comments about events during the test that were hard for
the experimenter to understand. Even though users may not
always remember why they did certain things, they are sometimes
able to clarify some of their presumptions and goals.

Finally, as soon as possible after the user has left, the experimenter
should check that all results from the test have been labelled with
the test user’s number, including any files recorded by the
computer, all questionnaires and other forms, as well as the experi-
menter’s own notes. Also, the experimenter should write up a brief
report on the experiment as soon as possible, while the events are
still fresh in the experimenter’s mind and the notes still make
sense. A full report on the complete sequence of experiments may
be written later, but the work of writing such a report is made
considerably simpler by having well-organized notes and prelimi-
nary reports from the individual tests.

191

Usability Engineering

Goal:
Usability

b

Component:
Efficiency of use

A

Component:
Learnability

Quantification: Measurement Method:
Average time needed to per- User brought to lab, given
form five specified tasks list of the tasks, and per-
forms them without help

Y

Data-Collection Technique:
Stopwatch
(with rules for when to start
and stop the watch)

Figure 19 Model of usability measurement

6.7 Performance Measurement

Measurement studies form the basis of much traditional research
on human factors and are also important in the usability engi-
neering lifecycle for assessing whether usability goals have been
met (see page 79) and for comparing competing products. User
performance is almost always measured by having a group of test
users perform a predefined set of test tasks while collecting time
and error data.

A major pitfall with respect to measurement is the potential for
measuring something that is poorly related to the property one is
really interested in assessing. Figure 19 shows a simple model
relating the true goal of a measurement study (the usability of the
system) to the actual data-collection activities that may sometimes
erroneously be thought of as the core of measurement. As indicated
by the model, one starts out by making clear the goal of the exer-
cise. Here, we will assume that “usability” as an abstract concept is

192

Usability Testing

the goal, but it could also be, e.g., improved customer perceptions
of the quality of a company’s user interfaces.

Goals are typically quite abstract, so one then breaks them down
into components like the usability attributes discussed further in
Section 2.2. Figure 19 shows two such components, learnability and
efficiency of use. As further discussed in Section 4.3, one then
needs to balance the various components of the goal and decide on
their relative importance. Once the components of the goal have
been defined, it becomes necessary to quantify them precisely. For
example, the component “efficiency of use” can be quantified as
the average time it takes users to perform a certain number of spec-
ified tasks. Even if these tasks are chosen to be representative of the
users’ normal task mix, it is important to keep in mind that the test
tasks are only that: test tasks and not all possible tasks. In inter-
preting the results from the measurement study, it is necessary to
keep in mind the difference between the principled component
that one is aiming for, that is, efficiency of use in general, and the
specific quantification which is used as a proxy for that component
(i.e., the test tasks). As an obvious example, an iterative design
process should not aim at improving efficiency of use for a system
just by optimizing the interface for the execution of the five test
tasks and nothing else (unless the tasks truly represent all of what
the user ever will do with the system).

Given the quantification of a component, one needs to define a
method for measuring the users” performance. Two obvious alter-
natives come to mind for the example in Figure 19: either bring
some test users into the laboratory and give them a list of the test
tasks to perform, or observe a group of users at work in their own
environment and measure them whenever a task like the specified
test tasks occurs. Finally, one needs to define the actual activities
that are to be carried out to collect the data from the study. Some
alternatives for the present example could be to have the computer
measure the time from start to end of each task, to have an experi-
menter measure it by a stopwatch, and to have users report the
time themselves in a diary. In either case it is important to have a
clear definition of when a task starts and when it stops.

193

Usability Engineering

Typical quantifiable usability measurements include

¢ The time users take to complete a specific task.

® The number of tasks (or the proportion of a larger task) of
various kinds that can be completed within a given time limit.

¢ The ratio between successful interactions and errors.

¢ The time spent recovering from errors.

* The number of user errors.

* The number of immediately subsequent erroneous actions.

* The number of commands or other features that were utilized by
the user (either the absolute number of commands issued or the
number of different commands and features used).

e The number of commands or other features that were never used
by the user.

e The number of system features the user can remember during a
debriefing after the test.

¢ The frequency of use of the manuals and/or the help system, and
the time spent using these system elements.

e How frequently the manual and/or help system solved the
user’s problem.

¢ The proportion of user statements during the test that were posi-
tive versus critical toward the system.

* The number of times the user expresses clear frustration (or clear
joy)-

¢ The proportion of users who say that they would prefer using
the system over some specified competitor.

e The number of times the user had to work around an unsolvable
problem.

e The proportion of users using efficient working strategies
compared to the users who use inefficient strategies (in case
there are multiple ways of performing the tasks).

¢ The amount of “dead” time when the user is not interacting with
the system. The system can be instrumented to distinguish
between two kinds of dead time: response-time delays where the
user is waiting for the system, and thinking-time delays where
the system is waiting for the user. These two kinds of dead time
should obviously be approached in different ways.

194

Usability Testing

* The number of times the user is sidetracked from focusing on the
real task.

Of course, only a subset of these measurements would be collected
during any particular measurement study.

6.8 Thinking Aloud

Thinking aloud may be the single most valuable usability engi-
neering method. Basically, a thinking-aloud test involves having a
test subject use the system while continuously thinking out loud
[Lewis 1982]. By verbalizing their thoughts, the test users enable us
to understand how they view the computer system, and this again
makes it easy to identify the users” major misconceptions. One gets
a very direct understanding of what parts of the dialogue cause the
most problems, because the thinking-aloud method shows how
users interpret each individual interface item.

The thinking-aloud method has traditionally been used as a
psychological research method [Ericsson and Simon 1984], but it is
increasingly being used for the practical evaluation of human-
computer interfaces [Denning et al. 1990]. The main disadvantage
of the method is that is does not lend itself very well to most types
of performance measurement. On the contrary, its strength is the
wealth of qualitative data it can collect from a fairly small number
of users. Also, the users’ comments often contain vivid and explicit
quotes that can be used to make the test report more readable and
memorable.

At the same time, thinking aloud may also give a false impression
of the cause of usability problems if too much weight is given to the
users’ own “theories” of what caused trouble and what would
help. For example, users may be observed to overlook a certain
field in a dialog box during the first part of a test. After they finally
find the field, they may claim that they would have seen it immedi-
ately if it had been in some other part of the dialog box. It is impor-
tant not to rely on such statements. Instead, the experimenter
should make notes of what the users were doing during the part of

195

Usability Engineering

the experiment where they overlooked the critical field. Data
showing where users actually looked has much higher validity
than the users’ claim that they would have seen the field if it had
been somewhere else. The strength of the thinking-aloud method is
to show what the users are doing and why they are doing it while
they are doing it in order to avoid later rationalizations.

Thinking out loud seems very unnatural to most people, and some
test users have great dlfﬁcultles in keeping up a steady stream of
utterances as they use a system.? Not only can the unnaturalness of
the thinking aloud situation make the test harder to conduct, but it
can also impact the results. First, the need to verbalize can slow
users down, thus making any performance measurements less
representative of the users’ regular working speed. Second, users’
problem solving behavior can be influenced by the very fact that
they are verbalizing their thoughts. The users might notice incon-
sistencies in their own models of the system, or they may concen-
trate more on critical task components [Bainbridge 1979], and these
changes may cause them to learn some user interfaces faster or
differently than they otherwise would have done. For example,
Berry and Broadbent [1990] provided users with written instruc-
tions on how to perform a certain task and found that users
performed 9% faster if they were asked to think aloud while doing
the task. Berry and Broadbent argue that the verbalization rein-
forced those aspects of the instructions which the users needed for
the task, thus helping them become more efficient. In another study
[Wright and Converse 1992], users who were thinking aloud while
performing various file system operations were found to make
only about 20% of the errors made by users who were working
silently. Furthermore, the users in the thinking-aloud study
finished their tasks about twice as fast as the users in the silent
condition.

8. Verbalization seems to come the hardest to expert users who may perform
many operations so quickly that they have nothing to say. They may not even
consciously know what they are doing in cases where they have completely
automated certain common procedures.

196

Usability Testing

The experimenter will often need to continuously prompt the user
to think out loud by asking questions like, “What are you thinking
now?” and “What do you think this message means?” (after the
user has noticed the message and is clearly spending time looking
at it and thinking about it). If the user asks a question like, “Can I
do such-and-such?” the experimenter should not answer, but
instead keep the user talking with a counter-question like, “What
do you think will happen if you do it?” If the user acts surprised
after a system action but does not otherwise say anything, the
experimenter may prompt the user with a question like, “Is that
what you expected would happen?” Of course, following the
general principle of not interfering in the user’s use of the system,
the experimenter should not use prompts like, “What do you think
the message on the bottom of the screen means?” if the user has not
noticed that message yet.

Since thinking aloud seems strange to many people, it may help to
give the test users a role model by letting them observe a short
thinking-aloud test before the start of their own experiment. One
possibility is for the experimenter to enact a small test, where the
experimenter performs some everyday task like looking up a term
in a dictionary while thinking out loud. Alternatively, users can be
shown a short video of a test that was made with the sole purpose
of instructing users. Showing users how a test videotape looks may
also help alleviate their own fears of any videotaping that will be
done during the test.

Users will often make comments regarding aspects of the user
interface which they like or do not like. To some extent, it is one of
the great advantages of the thinking-aloud method that one can
collect such informal comments about small irritants that would
not show up in other forms of testing. They may not impact
measurable usability, but they might as well be fixed. Unfortu-
nately, users will often disagree about such irritants, so one should
take care not to change an interface just because of a comment by a
single user. Also, user comments will often be inappropriate when
seen in a larger interface design perspective, so it is the responsi-
bility of the experimenter to interpret the user’s comments and not
just accept them indiscriminately. For example, users who are

197

Usability Engineering

using a mouse for the first time will often direct a large proportion
of their comments toward aspects of moving the mouse and
pointing and clicking, which might be interesting for a designer of
more intuitive input hardware but are of limited use to a software
designer. In such a test, the experimenter would need to abstract
from the users” mouse problems and try to identify the underlying
usability problems in the dialogue and estimate how the users
would have used the interface if they had been better at using the
pointing device.

Constructive Interaction

A variation of the thinking-aloud method is called constructive
interaction and involves having two test users use a system together
[O'Malley et al. 1984]. This method is sometimes also called codis-
covery learning [Kennedy 1989]. The main advantage of construc-
tive interaction is that the test situation is much more natural than
standard thinking-aloud tests with single users, since people are
used to verbalizing when they are trying to solve a problem
together. Therefore, users may make more comments when
engaged in constructive interaction than when simply thinking
aloud for the benefit of an experimenter [Hackman and Biers 1992].
The method does have the disadvantage that the users may have
different strategies for learning and using computers. Therefore,
the test session may switch back and forth between disparate ways
of using the interface, and one may also occasionally find that the
two test users simply cannot work together.

Constructive interaction is especially suited for usability testing of
user interfaces for children since it may be difficult to get them to
follow the instructions for a standard thinking-aloud test.

Constructive interaction is most suited for projects where it is easy
to get large numbers of users into the lab, and where these users
are comparatively cheap, since it requires the use of twice as many
test users as single-user thinking aloud.

Usability Testing

Retrospective Testing

If a videotape has been made of a user test session, it becomes
possible to collect additional information by having the user
review the recording [Hewett and Scott 1987]. This method is
sometimes called retrospective testing. The user’s comments while
reviewing the tape are sometimes more extensive than comments
made under the (at least perceived) duress of working on the test
task, and it is of course possible for the experimenter to stop the
tape and question the user in more detail without fearing to inter-
fere with the test, which has essentially already been completed.

Retrospective testing is especially valuable in cases where repre-
sentative test users are difficult to get hold of, since it becomes
possible to gain more information from each test user. The obvious
downside is that each test takes at least two times as long, so the
method is not suited if the users are highly paid or perform critical
work from which they cannot be spared for long. Unfortunately,
those users who are difficult to get to participate in user testing are
often exactly those who are also very expensive, but there are still
some cases where retrospective testing is beneficial.

Coaching Method

The coaching method [Mack and Burdett 1992] is somewhat
different from other usability test methods in having an explicit
interaction between the test subject and the experimenter (or
“coach”). In most other methods, the experimenter tries to interfere
as little as possible with the subject’s use of the computer, but the
coaching method actually involves steering the user in the right
direction while using the system.

During a coaching study, the test user is allowed to ask any system-
related question of an expert coach who will answer to the best of
his or her ability.” Usually, the experimenter or a research assistant
serves as the coach. One variant of the method involves a separate
coach chosen from a population of expert users. Having an inde-
pendent coach lets the experimenter study how the coach answers
the user’s questions. This variant can be used to analyze the expert
coach’s model of the interface. Normally, though, coaching focuses

199

Usability Engineering

on the novice user and is aimed at discovering the information
needs of such users in order to provide better training and docu-
mentation, as well as possibly redesigning the interface to avoid
the need for the questions.

The coaching method has proven helpful in getting Japanese users
to externalize their problems while using computers [Kato 1986].
Other, more traditional methods are sometimes difficult to use in
Japan, where cultural norms make some people reluctant to
verbalize disagreement with an interface design.

The coaching situation is more natural than the thinking-aloud
situation. It also has an advantage in cases where test users are
hard to come by because the intended user population is small,
specialized, and highly paid. Coaching provides the test users with
tangible benefits in return for participating in the test by giving
them instruction on a one-to-one basis by a highly skilled coach.

Finally, the coaching method may be used in cases where one
wants to conduct tests with expert users without having any
experts available. Coaching can bring novice users up to speed
fairly rapidly and can then be followed by more traditional tests of
the users” performance once they have reached the desired level of
expertise.

6.9 Usability Laboratories

Many user tests take place in specially equipped usability laborato-
ries [Nielsen 1994a]. Figure 20 shows a possible floor plan for such
a laboratory. I should stress, however, that special laboratories are a
convenience but not an absolute necessity for usability testing. It is

9. One variant of the coaching method would be to restrict the answers to
certain predetermined information. In an extensive series of experiments, one
could then vary the rules for the coach’s answers in order to learn what types
of answers helped users the most. Unfortunately, this variant requires
extremely skilled and careful coaches since they need to compose answers on
the fly to unpredictable user questions.

200

102

Sound-proof walls with one-way mirrors

f%izﬁrr]a o Camera focusing
documgmation on the user \ Event logger’s workstation
\

¢~ Large
Test Room) \\monitor
’ Observa- duplicating
tion Room users
D screen
User’s work- 5 i
place with | el xecutive
computer o Observation
and manual x Lounge
Camera Monitors showing view
focusing on Extra chair for from each camera and Video
computer experimenter the mix being taped editing
in room or a and mixing
second user Experimenter’s workstation controls

Figure 20 Floor plan for a hypothetical, but typical, usability laboratory.

Bunsay Aupgesn

Usability Engineering

possible to convert a regular office temporarily into a usability
laboratory, and it is possible to perform usability testing with no
more equipment than a notepad.

In September 1993, I surveyed thirteen usability laboratories from a
variety of companies [Nlelsen 1994a]. The median floor space of
the laboratories was 63 m (678 square feet), and the median size of
the test rooms was 13 m? (144 square feet). The smallest laboratory
was 35 m? (377 square feet) with only 9 m? (97 square feet) for the
test user. The largest laboratory was 237 m? and had 7 rooms,
allowing a variety of tests to take place sunultaneously [Lund
1994]. The largest single test room was 40 m? (430 square feet) and
was found in a telephone company with a need to test groupware
interfaces with many users.

Having a permanent usability laboratory decreases the overhead of
usability testing (once it is set up, that is!) and may thus encourage
increased usability testing in an organization. Having a special
room and special equipment dedicated to usability testing means
that there will be fewer scheduling problems associated with each
test and also makes it possible to run tests without disturbing other
groups.

Usablht?/ laboratories typically have sound-proof, one-way
mirrors!” separating the observation room from the test room to
allow the experimenters, other usability specialists, and the devel-
opers to discuss user actions without disturbing the user. Users are
not so stupid that they do not know that there are observers behind
a wall with a large mirror in a test room, so one might as well
briefly show the users the observation room before the start of the
test. Knowing who and what are behind the mirror is much less
stressful for the users than having to imagine it. People usually
come to ignore unseen observers during the test, even though they
know they are there.

Having an executive observation lounge behind the main observa-
tion room again allows a third group of observers (e.g., the devel-

10. One-way mirrors were found in 92% of the labs in my survey.

202

Usability Testing

opment team) to discuss the test without disturbing the primary
experimenters and the usability specialists in the observation
room.

Typically, a usability laboratory is equipped with several video
cameras under remote control from the observation room.!! These
cameras can be used to show an overview of the test situation and
to focus in on the user’s face, the keyboard, the manual and the
documentation, and the screen. A producer in the observation
room then typically mixes the signal from these cameras to a single
video stream that is recorded, and possibly timestamped for later
synchronization with an observation log entered into a computer
during the experiment. Such synchronization makes it possible to
later find the video segment corresponding to a certain interesting
user event without having to review the entire videotape.

More rarely, usability laboratories include other equipment to
monitor users and study their detailed behavior. For example, an
eyetracker can be used to collect data on what parts of the screens
the user looks at [Benel et al. 1991].

To Videotape or Not

Having videotapes of a user test is essential for many research
purposes where one needs to study the interaction in minute detail
[Mackay and Tatar 1989]. For practical usability engineering
purposes, however, there is normally no need to review a user test
on videotape since one is mostly interested in finding the major
“usability catastrophes” anyway. These usability problems tend to
be so glaring that they are obvious the first time they are observed
and therefore do not require repeated perusal of a record of the test
session. This is especially true considering estimates that the time
needed to analyze a videotape is between 3 and 10 times the dura-
tion of the original user test. In most cases, this extra time is better
spent running more test subjects or testing more iterations of the
design.

11. The average number of cameras in each test room was 2.2 in my survey,
with 2 cameras being the typical number and a few labs using 1 or 3.

203

Usability Engineering

Videotape does have several uses in usability engineering,
however. For example, a complete record of a series of user tests is
a way to perform formal impact analysis of usability problems
[Good et al. 1986]. Impact analysis involves first finding the
usability problems and then going back to the videotapes to inves-
tigate exactly how many users had each usability problem and how
much they were delayed by each problem. Since these estimates
can only be made after one knows what usability problems to look
for, an impact analysis requires a videotape or other detailed record
of the test sessions. Alternatively, one can run more tests and count
the known problems as they occur. Impact analyses can then be
used to prioritize the fixing of the usability problems in a redesign
such that the most effort is spent on those problems that are faced
by many users and impact them severely.

Videotape also serves as an essential communications medium in
many organizations where it may otherwise be difficult for human
factors professionals to persuade developers and managers that a
certain usability problem is in fact a problem. Seeing a video of a
user struggling with the problem often convinces these people.
This goal can also be achieved by simpler means, however, since it
is normally even more effective to have the doubter observe a user
test in person.12

A final argument in favor of videotaping and equipment-extensive
usability laboratories is the need to impress upper management
and research funding agencies with the unique aspects of usability
work. Some usability specialists feel that simpler techniques may
not be sufficiently impressive to outsiders, whereas having an

12. Doing so requires strict adherence to the “shut-up” rule: The developers
should be advised in advance that they are not supposed to interfere with the
user during the experiment. Doing so can be extremely hard for a person who
normally has quite strong defensive feelings toward the design. Developers
have been known to forcibly interrupt a test user’s “maltreatment” of their
beloved system and shout, “Why don’t you press that function key!” This, of
course, totally destroys the test. Randy Pausch from the University of Virginia
allows developers to be present during user testing but requires them to
preface any interruption with the phrase, “I am sorry that I am such a poor
programmer that I made the system this difficult to use.”

204

Usability Testing

expensive laboratory will result in increased funding and respect
due to its “advertising value” [Lindgaard 1991].

Cameraless Videotaping

The main aspects of a test session can be captured on videotape
without the use of cameras. Many computers provide a video
output that either is directly compatible with video recording or
can be made so fairly cheaply by a scan converter.!® This video
signal can be fed directly into the “video in” jack of the video
recorder and will thus allow the recording of the exact image the
user sees on the monitor. This technique will normally result in
better image quality than filming the monitor with a camera, but
the video resolution will still be poorer than that of most computer
monitors. Furthermore, an audio signal can be fed into the video
recorder’s “audio in” jack from a microphone, thus creating a
composite recording of the screen and the user’s comments
[Connally and Tullis 1986].

Cameraless videotaping has the obvious disadvantages of not
including the user in the picture and not making it possible for a
camera operator to zoom in on interesting parts of the screen or the
manual page being studied in vain by the user. Unless a high-defi-
nition television standard is used, one will also suffer a loss of reso-
lution since current television standards use a poorer quality signal
than that used by almost all computer monitors. These limitations
may make the resulting videotape less appealing and convincing in
some cases. At the same time, cameraless videotaping is consider-
ably cheaper because neither cameras nor operators are needed,
and the users are normally less intimidated by a microphone than
by a camera.

Portable Usability Laboratories

In addition to permanent usability laboratories, it is possible to use
portable usability laboratories for more flexible testing and for field
studies. With a portable usability laboratory, any office can be

13. Scan converters were used by 46% of the labs in my survey.

205

Usability Engineering

rapidly converted to a test room, and user testing can be conducted
where the users are rather than having to bring the users to a fixed
location.

A true discount portable usability laboratory need consist of no
more than a notepad and possibly a laptop computer to run the
software that is being tested. Normally, a portable usability labora-
tory will include slightly more equipment, however. Typical equip-
ment includes a camcorder (possibly just home video equipment,
but preferably of professional quality since the filming of user
interfaces requires as high resolution as possible) and a lavaliere
microphone (two microphones are preferred so that the experi-
menter can also get one). The regular directional microphone built
into many camcorders is normally not sufficient because of the
noise of the computer. Also, a tripod helps steady the image and
carry the camera during the hour-long test sessions.

Usability Kiosks

A final approach to the collection of usability data is the usability
kiosk, which really is a self-served usability laboratory for use as
part of a hallway methodology [Gould et al. 1987]. In general, the
hallway method involves putting a user interface on display in a
heavily trafficked area such as outside a company cafeteria in order
to collect comments from users and other passersby. A usability
kiosk can conduct automated usability testing with self-selected
users in such a setting by providing access to a computer running a
test interface, suggesting various test tasks to the users, and
recording their task times and any comments they might have.

206

chapter7 UIsability Assessment
Methods beyond Testing

Even though usability testing forms the cornerstone of most recom-
mended usability engineering practice, there are several other
usability methods that can and should be used to gather supple-
mentary data. I have already discussed heuristic evaluation in
Chapter 5 (page 155) as a method where usability specialists, or
even the developers themselves, apply their knowledge of estab-
lished usability principles to find usability problems without the
need to involve users.

7.1 Observation

Simply visiting the users to observe them work is an extremely
important usability method with applications both for task anal-
ysis and for information about the true field usability of installed
systems [Diaper 1989b]. Observation is really the simplest of all
usability methods since it involves visiting one or more users and
then doing as little as possible in order not to interfere with their
work. Of course, the observer can take notes (unobtrusively), and it
may even be possible to use videotaping in some environments,
though most computer customers do not like to have outsiders
come in and videotape their business.

207

Usability Engineering

When conducting an observation, the observer should stay quiet
most of the time. The goal is to become virtually invisible to the
users so that they will perform their work and use the system in the
same way they normally do. Every now and then, it may become
necessary to interrupt a user to ask for an explanation of some
activity that is impossible for the observer to understand, but such
questions to the users should be kept to a minimum. It is normally
better to make a note of the strange user action and see if the
observer can understand it if it occurs again later. If not, then the
user can be questioned during a debriefing session at the end of the
visit.

Since the observer will normally be a representative from the
development group, the computer vendor, or from corporate head-
quarters, users will naturally have many questions to ask of the
observer, and they may request help in getting the system to do
certain tasks. During the beginning of the visit, the observer should
decline any such requests for assistance, giving the explanation
that he or she is there to observe how the users work when they do
not have a systems expert around. Toward the end of the visit, it
may be reasonable for the observer to step out of the role and help
the users, both to pay them back for participating in the study and
to learn more about the things the users want done and why they
could not do them themselves.

One advantage of observing users doing their own tasks is that one
often finds that they use the software in unexpected ways that one
would (by definition) not have sought to test in a planned labora-
tory experiment. For example, users have often been found to use
their word processor to edit electronic forms. They will have a
template stored in a file that they will open up, fill in, and save
under a new name, leaving the template file unchanged. A
common user error in these cases is to save the revised document
without changing its name, thus overwriting the template, because
the word processor had no concept of templates and thus offered
them no protection. Based on such observations, some word
processors have been released in revised versions to handle
templates as a special file category.

208

Usability Assessment Methods beyond Testing

7.2 Questionnaires and Interviews

Many aspects of usability can best be studied by simply asking the
users. This is especially true for issues relating to the users’ subjec-
tive sansfactlon and possible anxieties, which are hard to measure
objectively.! Questionnaires and interviews are also useful
methods for studying how users use systems and what features
they particularly like or dislike.

From a usability perspective questionnaires and interviews are
indirect methods, since they do not study the user mterface itself
but only users’ opinions about the user interface.> One cannot
always take user statements at face value. Data about people’s
actual behavior should have precedence over people’s claims of
what they think they do. In a classic study, Root and Draper [1983]
asked users whether they knew various commands. Later in the
questionnaire, users were also asked to provide free-form
comments on the commands, and 26% of the users commented on
the command zap even though they had previously stated that
they did not know it. The study also found that users gave more
useful answers if they had been using the system shortly before
answering the questionnaire. Finally, the most striking result was a
comparison of the results from questionnaires administered before
and after the introduction of some new features to the system. The
correlation between users’ predictions of whether they would like
the new features and their ratings of the features after having tried
them was only 0.28, indicating that one should not always interpret
the results literally when asking users about user interface
elements they have not tried.

In another example, users of a mobile telephone system were given
a questionnaire with questions about the difficulty of the instruc-
tions [Karis and Zeigler 1989]. The results showed that 24 of the 25

1. As mentioned on page 34, some physiological measures can be used to
measure stress objectively, but such methods are rarely used in software
development projects.

2. Of course, questionnaires and interviews are direct methods when it comes
to measuring user satisfaction.

209

Usability Engineering

respondents stated that the instructions were “about average” or
“simple” to understand, indicating that the instructions were satis-
factory. When the same subjects were given a test, however, their
average performance was only 50% correct, leading to the more
accurate conclusion that the instructions were far from adequate. In
other words, the users thought that they had understood the
instructions, whereas in fact they had not.

Questionnaires and interviews are very similar methods since both
involve asking users a set of questions and recording their answers.
Questionnaires are printed on paper or presented interactively on a
computer and can be administered without the need to have any
other people present beside the user answering the questions. In
contrast, interviews involve having an interviewer read the ques-
tions to the respondent, and the answers are recorded by the inter-
viewer instead of being filled in by the respondent. Interviews thus
require much more usability staff time, but they do have the
advantage of being more flexible, since the interviewer can explain
difficult questions in more depth and can rephrase a question if the
respondent’s answer indicates that the question was misunder-
stood. Also, interviews can be more free-form than questionnaires,
with the interviewer opportunistically asking follow-up questions
that were not in the script. Of course, any such free-form elements
in interviews will make them harder to analyze quantitatively, and
questionnaires are normally better if one is just looking for hard
numbers. A further difference is that interviews generate imme-
diate results, starting after the first customer visit, whereas ques-
tionnaires are subject to mailing, response, and coding delays.

Questionnaires are usually administered by mail, and the response
rate can be increased substantially by including a prepaid and pre-
addressed reply envelope. One study had a response rate of 26%
when no reply envelope was enclosed, and 90% when a prepaid
reply envelope was supplied [Armstrong and Lusk 1988]. For ques-
tionnaires that are sent to a business address, the existence of a pre-
addressed reply envelope is more of a factor than whether the
postage has been prepaid [Armstrong and Lusk 1988].

210

Usability Assessment Methods beyond Testing

In principle, it is possible to distribute a questionnaire to the entire
user population. Questionnaires are probably the only usability
method that makes such extensive coverage feasible, with the
ensuing possibility for discovering differences between various
user categories as well as the specific needs of various small groups
of users. In practice, one will often limit a questionnaire to a
randomly selected sample of between fifty and a thousand users,
depending on how detailed data is needed.

Interviews may be conducted over the telephone but normally
involve having the interviewer travel to the user’s location. Inter-
views are therefore subject to scheduling constraints, but they do
have the advantage of getting fairly high response rates. Once a
user has agreed to schedule an interview, it is normally also
possible for the interviewer to complete it.

Interviews are well suited to exploratory studies where one does
not know yet what one is looking for, since the interviewer can
adjust the interview to the situation. Interviews typically include
many open-ended questions where users are encouraged to
explain themselves in depth, often leading to colorful quotes that
can be used to enliven reports and presentations to management.
In order to ensure unbiased responses, the interviewer should stay
neutral during the interview and not agree or disagree with user
statements. Nor should the interviewer try to explain to the user
why the system behaved in a certain way, even if the user
complains heavily about it. Questions should be phrased in an
open and neutral way, and should encourage the user to reply with
full sentences rather than just with a “yes” or a “no.” For example,
instead of asking, “Did you like this new feature?” and “Did you
use it?” one could ask, “What do you think of this new feature?”
and “What have you used this new feature for so far?”

Both in interviews and in questionnaires with open questions it is
often fruitful to ask users to recall critical incidents in their use of
the system. Critical incidents are occasions where the system was
particularly poor or surprisingly good, and knowing the detailed
circumstances of such incidents can often help avoid worst-case

211

Usability Engineering

incidents in the future and help make the benefits of best-case inci-
dents available to other users also.

During an interview, the interviewer can continuously evaluate the
user’s replies, making it possible to rephrase questions that seem to
have been misunderstood. In contrast, questionnaires have to
stand on their own. It is therefore essential that all questionnaires
be subjected to pilot testing and iterative design before they are
distributed to the users in large numbers. Essentially, a question-
naire is a user interface in its own right, and one should use
usability engineering principles to ensure that the respondents will
interpret it correctly. Also, questionnaires that irritate the users by
being too long, too hard to understand, or too unprofessional will
often get a low response rate.

Even though it may require a fair amount of work to revise the
questions until they are easy to understand and easy to answer,
once a final questionnaire design exists, it is easy to collect data
from a large number of users. It is also possible to reuse the same
questionnaire at later occasions to check on the evolution in user
attitudes or to compare the replies from users of different systems.

Questionnaires may contain open questions where the users are
asked to write in their own reply in natural language, but users
often do not bother to do so, or they may write cryptic statements
that are hard to interpret. Therefore, questionnaires normally rely
heavily on closed questions, where the users have to supply a
single fact (such as number of hours worked with the system per
week), go through a checklist (such as indicating which types of
tasks each user performs with the system), or state their opinion on
a rating scale. Checklists may have room for write-in options, but
one should try to make the preprinted list of options as complete as
possible, as many users will only consider the options that are
explicitly listed, making the results from write-in options less
representative of all the users. In one study where users were first
observed using a system and then given a questionnaire about it,
the replies to a checklist of features were 85% accurate (when
compared with the experimenters’ observations of the respon-
dents’ actual use of the system) which is pretty good, but the

212

Usability Assessment Methods beyond Testing

replies given to an open question that did not list the features were
only 48% accurate [Edgerton et al. 1993]. Checklists can be made
more usable by including recognizable dialogue elements, such as
the precise names of commands or features as well as icons and
dialog box layouts.

Rating scales are often used to ask users how well they liked
various aspects of the system or how useful they find different
features. See Table 4 (page 36) and Table 3 (page 35) for examples of
semantic differential and Likert scale questions that can be
included in questionnaires. To ensure ease-of-use of the question-
naire, only a small number of different types of questions should be
mixed in the same questionnaire. Also, the rating scales for replies
should be the same throughout a questionnaire.

Questionnaires to measure user satisfaction can be quite sophisti-
cated such as the QUIS (Questionnaire for User Interface Satisfac-
tion) method [Chin et al. 1988], which has users rate 27 system
attributes on 10-point scales, followed by a factor analysis.
Normally, however, it is recommended to use shorter question-
naires® in order to maximize the response rate. Questionnaires that
are kept to a single page (or at least the two sides of a single sheet
of paper) stand a much better chance of being filled out by busy
users than longer questionnaires that seem to be much more of a
burden. It is true for all usability methods that one should know in
advance what one wants to do with the data that is collected, but
this rule is especially important for questionnaires: Only ask a
question if you want to know the answer (that is, if the replies will
make any difference to your project). To assess whether you really
need to ask a question, try a thought experiment where you
imagine two drastically different reply statistics and consider how
you would change the project in either case.

3. A factor analysis of an 18-question subjective satisfaction questionnaire
found that 87% of the total variance in the responses was accounted for by
three underlying factors: system usefulness, information quality, and interface
quality [Lewis 1992]. It should be possible to assess these three factors with a
reasonably small number of questions.

213

Usability Engineering

A common aspect of both questionnaires and interviews is that one
cannot necessarily trust all the users’ answers. People have a
tendency to give the replies they think they ought to give, especially
to sensitive questions where certain answers may be embarrassing
or may be deemed socially unacceptable. Thus, one should always
consider the possibility that the situation is somewhat different
from that indicated by the users in the case of such sensitive ques-
tions. As an example of a potentially sensitive question, users
might be asked how much time they spent searching for the
answer in the manual before calling a help-line with a problem.
Since the users know that they “ought” to have tried to solve the
problem themselves, it is likely that their replies will tend to over-
estimate the amount of time spent reading the manual. Response
bias in favor of socially acceptable answers is more pronounced for
interviews conducted in person and less pronounced for question-
naires administered by a computer where people seem to be less
anxious to avoid embarrassment.

7.3 Focus Groups

Focus groups [Caplan 1990; Goldman and McDonald 1987; Green-
baum 1988, 1993; O'Donnell et al. 1991] are a somewhat informal
technique that can be used to assess user needs and feelings both
before the interface has been designed and after it has been in use
for some time. In a focus group, about six to nine users are brought
together to discuss new concepts and identify issues over a period
of about two hours. Each group is run by a moderator who is
responsible for maintaining the focus of the group on whatever
issues are of interest. From the users’ perspective, a focus-group
session should feel free-flowing and relatively unstructured, but in
reality, the moderator has to follow a preplanned script for what
issues to bring up. Focus groups often bring out users’ sponta-
neous reactions and ideas through the interaction between the
participants and have the major advantage of allowing observation
of some group dynamics and organizational issues.

214

Usability Assessment Methods beyond Testing

McClelland and Brigham [1990] present an example of the use of
focus groups in the design of an advanced telecommunications
system for office and home workers. First, a “user needs work-
shop” was held where six communications users discussed their
communications needs and problems with respect to current tools
and practices. Then, six experts spent two days in a design work-
shop, outlining five different design directions and usage scenarios
to address the user needs identified in the initial focus group.
Finally, the focus group with the six users was reconvened to
discuss these proposals for a future system.

To prepare for a focus group, the moderator needs to prepare a list
of the issues to be discussed and set goals for the kinds of informa-
tion that are to be gathered. During the group session, the moder-
ator has the difficult job of keeping the discussion on track without
inhibiting the free flow of ideas and comments. Also, the moder-
* ator needs to ensure that all members of the group get to contribute
to the discussion and guard against having the opinions of any
single participant dominate unduly. After the session, data analysis
can be as simple as having the moderator write a short report
summing up the prevailing mood in the group, illustrated with a
few colorful quotes. More detailed analyses can also be performed
but are difficult and often time-consuming because of the unstruc-
tured nature of focus groups.

Focus groups are fairly demanding in terms of the number of
representative users needed. Because of the need to keep the
discussion flowing and have a variety of perspectives represented,
a focus group cannot be run with much fewer than six users.
Furthermore, it is normally preferable to run more than one focus
group since the outcome of any single focus group session may not
be representative and since some discussions may have been side-
tracked so that too much time is spent on minor peculiarities of the
system.

As with all methods that are based on asking users what they want
instead of measuring or observing how they actually use things,
focus groups involve the risk that the users may think they want
one thing even though they in fact need another. This problem can

215

Usability Engineering

be minimized by exposing the users to as concrete examples of
possible of the technology being discussed in the focus group. As
an example of this phenomenon, Greif [1992] reports on focus
groups conducted to assess the potential of a version management
facility in a new version of the Lotus 1-2-3 spreadsheet. Initially, the
new features were presented to users as a way to allow multiple
spreadsheet users to compare and contrast alternative view of
budgets and other sets of numbers across computer networks. The
focus group users were sceptical about these ideas and expressed
distrust in networks and a nervousness about what other people
would do to their spreadsheets. Only after having seen a prototype
and scenarios of the use of version management for extensive
“what-if” analyses did the focus group participants change from
being sceptical to having a strong feeling that they would like to
get the new features.

One cheap way of approximating the focus-group approach
without the expense of gathering all these users is to rely on
computer conferencing and various forms of electronic networks.
For example, Yang [1990] started a project on undo facilities by
posting a question to the British academic network asking users
what undo facilities they used and how they liked them. If ques-
tions are posted to a computer conference group with an interest in
the issues, considerable discussion can often result. A disadvantage
is that online discussions are difficult (or impossible) to keep confi-
dential unless they take place on an in-house computer facility.

Two sources of bias are that computer conference subscribers tend
to be people with above average interest in computers, and that the
participants in any particular online discussion group tend to be
users with above average involvement in the topic of that group.
Therefore, discussions in an online forum will probably not reflect
the concerns of true novice users, but they may on the other hand
be a good way of getting in touch with “power users.” On the one
hand, one should remember that bulletin board postings are prob-
ably not representative of the majority of users. On the other hand,
advanced users (or “lead users” [von Hippel 1988]) sometimes face
needs that will later be general in the marketplace, but they face
them long before average users encounter these needs. Thus,

216

Usability Assessment Methods beyond Testing

addressing the power users’ needs may sometimes (but not
always) be a way of getting a head start on future usability work.

7.4 Logging Actual Use

Logging involves having the computer automatically collect statis-
tics about the detailed use of the system. Normally, logging is used
as a way to collect information about field use of a system after
release, but logging can also be used as a supplementary method
during user testing to collect more detailed data.

Logging the users” actual use of the system is particularly useful
because it shows how users perform their actual work and because
it is easy to automatically collect data from a large number of users
working under different circumstances. Typically, an interface log
will contain statistics about the frequency with which each user has
used each feature in the program and the frequency with which
various events of interest (such as error messages) have occurred.

Statistics showing the frequency of use of commands and other
system features can be used to optimize frequently used features.
Features that are not used or that are used very rarely should be
investigated to see whether it is possible to improve them or make
them more accessible to the users. It may also be possible to
completely remove such features from the system.

For example, Bradford et al. [1990] logged and analyzed 6,112 erro-
neous commands issued by users of a line-oriented operating
system. Thirty percent of the errors were simple spelling errors,
indicating the potential for a spelling corrector to help the users of
the system. Fully 48% of the errors were mode errors where users
issued commands that were inappropriate for the current state of
the system. This category of problem would probably be difficult to
correct in a maintenance release, but knowing about the mode
problem would be of great help in designing the next major change
of the system.

217

Usability Engineering

Statistics showing the frequency of various error situations can be
used to improve the usability of future releases of the system. If
certain errors occur very frequently, one should consider whether it
would be possible to redesign the system to avoid these error situa-
tions, or at least make them less likely to occur. Also, frequent error
messages are certainly candidates for concentrated usability efforts
to make them more understandable and constructive.

For example, Mosteller and Rooney (as reported by Chapanis
[1991]) logged 3,000 error messages received by programmers at a
mainframe facility. About 85% of the events were accounted for by
nine common error messages that were then studied in depth. One
particularly poorly worded error message (“Symbol not defined in
procedure”) accounted for 9.8% of the total and was often encoun-
tered repeatedly by the same programmer because it was difficult
to correct the underlying error without any additional information.
Mosteller and Rooney improved the wording of this one error
message and later found that it only accounted for 1.7% of the
errors logged after the change, thus indicating that the program-
mers were able to avoid repeating the error with the new error
message.

In a study of the use of online help, Senay and Stabler [1987]
logged 52,576 help sessions and found that the 10% of the help
screens that were accessed the most accounted for 92% of the
requests. Obviously, this result could be used to focus the attention
of the technical writers on improving those screens before other,
less frequently accessed screens.

Logging is usually achieved either by instrumenting low-level
parts of the system software, such as keyboard and mouse drivers,
or by modifying the software of interest. The latter approach is
much preferred, since it makes it easier to log events of interest. If
the only available data is raw input and output, it becomes much
harder to analyze the higher-level events of interest for system
usability, such as feature use or error situations. Ideally, instrumen-
tation might be possible on an intermediate level if the system is
implemented through a user interface management system (UIMS)
which handles input and output while knowing about the under-

218

Usability Assessment Methods beyond Testing

lying system features being accessed [Olsen and Halversen 1988].
Once a system has been instrumented for logging it is an easy
matter to keep collecting data over extended periods of time. If the
statistical analysis of the data is also automated, it becomes
possible to use logging as a method to alert the usability staff to
any changes in user needs that are shown by changes in the way
they use the system.

If the instrumented system runs on a mainframe or on worksta-
tions with a shared file space, it is easy to collect logging data by
simply copying the log files from each user at regular intervals.
Unfortunately, much modern software runs on personal computers
that may not even be connected through a network. It may be
necessary to collect logs by going around to the users and copying
floppies, but in some cases, it may be possible to collect log data
through electronic mail—either automatically or by asking the
users to periodically run a small script that sends off the log file.

Logging a user’s use of a system raises some privacy concerns that
can normally be addressed by explaining to users that only
summary statistics are being collected and that results will only be
reported in a form where the individual users cannot be identified.
In any case, basic ethics dictates that users should be informed
when interaction logging is going on and that they should be able
to disable the log if they so desire. Except for these privacy
concerns, logging has the major advantage compared with practi-
cally all other usability methods of not interfering with the users in
any way. Basically, users can ignore the log and use the system in
exactly the way they would anyway.

In addition to statistical use of logging data, it is also possible to log
complete transcripts of user sessions either for use in later playback
[Neal and Simons 1983, 1984] or for analysis of patterns of use,
such as what commands are issued next after an error situation
[Siochi and Ehrich 1991]. Transcript logging raises even more sensi-
tive privacy issues than statistical logging of event frequencies,
since it is possible to reconstruct exactly what the user was doing.
Indeed, it may be the purpose of the transcript log to do exactly
that. Therefore, it should always be possible for users to turn off

219

Usability Engineering

Figure 21 Sample display of logging data from a study of a graphical
user interface for children. The rectangles denote hypertext anchors in the
form of buttons and were not visible to the users. The numbers on each
anchor indicate the number of clicks on that anchor, and the other marks
indicate clicks outside the anchor regions. A few marks inside the anchor
rectangles indicate cases where a user pressed down the mouse button
outside the bounds of an anchor, moved the mouse cursor inside the
anchor, and then released the mouse button.

transcript logging when they perform sensitive tasks, and the
logging data should be safeguarded against unauthorized access.
Furthermore, one should not show playbacks of user sessions to
managers or others who are not involved in the usability study. In
general, the ethical principles for use of video recordings of user
testing (see page 181) should also apply to computerized playbacks
of user sessions.

A final use of logging data is to study the users’ detailed use of a
user interface to find usability problems that may not be apparent
when observing users. For example, Figure 21 shows results from a
study of a nonverbal hypermedia interface designed for children
[Nielsen and Lyngbaek 1990]. We logged the location of the users’

220

Usability Assessment Methods beyond Testing

clicks on the screen and later displayed the aggregated data from
23 children on screens like the one shown here. Not only did the
statistics show what graphics were most popular with the children,
but the detailed analysis of clicks outside the intended hypertext
anchors revealed some usability problems. As seen in Figure 21, the
active rectangles did not cover the graphics completely in all cases,
and users made several clicks (without effect) just on the border of
the anchors. Since the cursor was a hand pointing upward (¥h),
users tended to place it just below the object of interest, meaning
that they often missed their target without knowing why. This
example also shows that statistics from logging may be more vivid
when displayed in integration with the user interface than when
reported as stand-alone tables.

Combining Logging with Follow-Up Interviews

A major problem with logging data is that it only shows what the
users did but not why they did it. It is possible to combine logging
with other methods such as interviews, where users are shown
data about their own use of the system and asked to elaborate on
whatever interesting phenomena may be evident in the data. For
example, a user who had not been using a certain feature in a
system might be asked why he or she had not used the feature.

Confronting users with statistics of their system use should be

done with great sensitivity in order to avoid any hint of a “big
brother is watching” atmosphere.

7.5 User Feedback

For installed systems, the users themselves can form a major source
of usability information if one is willing to listen to their feedback.
User feedback has several advantages:

It is initiated by the users, so it shows their immediate and
pressing concerns.

¢ It is an ongoing process, so feedback will be received without
any special efforts to collect it.

221

Usability Engineering

e It will quickly show any changes in the users’ needs, circum-
stances, or opinions, since new feedback will be received when-
ever such changes occur.

Of course, one will tend to hear mostly from dissatisfied users and
from the most vocal ones, so user feedback may not always be
representative of the majority of users. Also, many complaints will
be idiosyncratic, based on erroneous analyses, or a desire for
known features from systems that are actually worse. Therefore, it
is recommended to supplement the feedback initiated by the users
themselves with methods where a representative set of users are
actively sought out and observed or questioned.

Mainframe or tightly networked systems can directly include a
“useless” or “gripe” command that will allow users to vent
their frustration by sending a complaint to the development team
immediately after they encounter a part of the system that does not
address their needs. Such a command would take a snapshot of the
system state and the user’s prior actions and forward this informa-
tion together with any free-form comments added by the user to
explain the problem. It is important for the command to collect as
much information as possible automatically in order to minimize
the user’s overhead in describing the situation.

Even without a special command to collect complaints automati-
cally, feedback can be collected by giving users access to special
electronic mail addresses, network newsgroups, or bulletin boards
where they can post complaints, praise, and suggestions for future
system changes. Customer support help lines can also serve double
duty as a way to collect statistics about frequent user problems. Of
course, non-electronic methods like modification request forms
and reply cards bound into the manuals can also be used to collect
user feedback. No matter what method is used, it is important not
just to record the users’ immediate complaints but also to classify
the problems and determine patterns and likely root causes.

Finally, many software companies use beta testing, where a forth-
coming product is released to a small number of selected
customers for their comments. Beta testing can provide user feed-
back that arrives in time to improve the first full release of the

222

Usability Assessment Methods beyond Testing

product, so it is highly recommended not just to view beta testing
as a debugging method to find programming errors but also to set
up a systematic method for collecting and analyzing user
comments regarding mismatches between the software and their
needs. Of course, just as beta testing should not be the only method
used for debugging, it should not be the only method for usability
engineering, since beta feedback will arrive too late to do as much
good as results from earlier usability engineering methods.

No matter what methods are used to collect user feedback, it is
important that those users who go to the trouble to comment on
the system are made to feel that their feedback is taken seriously.
Reply cards and other user comments should not just be piled up
in a corner until it comes time for the next release; they should be
acknowledged immediately after receipt. If possible, the acknowl-
edgment should not be a form letter but should explicitly address
the concerns raised by the user—even if only to say that the
problem would seem unsolvable with current technology. The
need for such ongoing commitment to reply to individual user
comments is one of the major disadvantages of the user-feedback
method. On the other hand, if users feel that they are talking to a
black hole, they will soon stop providing feedback, and this valu-
able source of field information will be lost.

7.6 Choosing Usability Methods

Table 10 shows a summary of the methods covered in Chapters 5,
6, and 7. For reasons of space, the table is necessarily simplified,
but it still provides a good, quick overview of the methods. It is
apparent from the table that the methods are intended to supple-
ment each other, since they address different parts of the usability
engineering lifecycle (see Chapter 4), and since their advantages
and disadvantages can partly make up for each other. It is therefore
highly recommended not to rely on a single usability method to the
exclusion of others.

223

N
N
=

"/—G s423dvy D) U1 pasacod spoyjaw Apjiqusn ayy Jo Aavwwng QL d1qeL

Method . Users ; o
Nowma Lifecycle Stage Nésded Main Advantage Main Disadvantage
Hetirfsiic Eaify Saskbreinnor Finds individual usability Does not involve real users,
A ¥ e . None problems. Can address so does not find “surprises”
evaluation cycle” of iterative design " : :
expert user issues. relating to their needs.
Performance | Competitive analysis, At least | Hard numbers. Results Does not find individual
measures final testing 10 easy to compare. usability problems.
Thinking Iterative design, 3.5 Pinpoints user misconcep- | Unnatural for users. Hard
aloud formative evaluation tions. Cheap test. for expert users to verbalize.
? Ecological validity; reveals)
: Task analysis, 1 : Appointments hard to set up.
Observation follow-up studies 3 or more users real tasks. Suggests No experimenter control.
functions and features.
Question- Task analysis, At least | Finds subjective user pref- | Pilot work needed (to pre-
naires follow-up studies 30 erences. Easy to repeat. vent misunderstandings).

1 : Flexible, in-depth attitude | Time consuming. Hard to
Iroe Gws 3ask anatyse 9 and experience probing. analyze and compare.
Focus Task _analysus, 6-9 Spontaneous reactions Hard to analyze. Low validity
groups user involvement per group | and group dynamics.

. : 2 Finds highly used (or Analysis programs needed
I;gtng%rgse 2 IT:\L}_%SNZ% dies 4 lz%ast unused) features. Can run | for huge mass of data. Viola-

P continuously. tion of users’ privacy.
User " Tracks changes in user Special organization
feedback e Hiadigds requirements and views. needed to handle replies.

Buusauibuz Aungesn

Usability Assessment Methods beyond Testing

Also, the table indicates that the choice of method may be partly
dependent on the number of users that are available for usability
activities. If very few users are available, emphasis should be
placed on heuristic evaluation, thinking aloud, and observation. If
more users are available, performance measurement and focus
groups become feasible, and if a large number of users are avail-
able, questionnaires, interaction logging, and systematic collection
of spontaneous user feedback can be considered. Of course, varia-
tions of the methods may call for fewer or more users. For example,
the collaborative interaction variation (page 198) requires twice as
many users as regular thinking aloud, but offers the advantage of a
more natural working situation for the test users.

The experience of the available usability staff may also impact the
choice of methods. The two simplest methods to use are probably
thinking aloud and observation since they leave most of the
“work” to the users, while leaving the usability person to shut up
and observe. By participating in a number of observations and
thinking aloud studies, a usability professional can build up an
understanding of usability principles that will significantly
improve that person’s performance as a heuristic evaluator. Also,
increased understanding of usability helps design valid measure-
ment and logging studies and provides the background to design
questionnaires and interviews that probe important usability
issues. Finally, focus group moderators need to be able to react to
group dynamics in real time.

Combining Usability Methods

There are many possible ways of combining the various usability
methods, and each new project may need a slightly different
combination, depending on its exact characteristics. A combination
that is often useful is that of heuristic evaluation and thinking
aloud or other forms of user testing. Typically, one would first
perform a heuristic evaluation to clean up the interface and remove
as many “obvious” usability problems as possible. After a redesign
of the interface, it would be subjected to user testing both to check

225

Usability Engineering

the outcome of the iterative design step and to find remaining
usability problems that were not picked up by the heuristic evalua-
tion.

There are two major reasons for alternating between heuristic eval-
uation and user testing as suggested here. First, a heuristic evalua-
tion pass can eliminate a number of usability problems without the
need to “waste users,” who sometimes can be difficult to find and
schedule in large numbers. Second, these two categories of
usability assessment methods have been shown to find fairly
distinct sets of usability problems, meaning that they supplement
each other rather than leading to repetitive findings [Desurvire et
al. 1992; Jeffries et al. 1991; Karat et al. 1992].

As another example, consider a video telephone system for inter-
connecting offices [Cool et al. 1992]. Such a system has the potential
for changing the way people work and interact, but these changes
will become clear only after an extended usage period. Also, as
with many computer-supported cooperative work applications,
video telephones require a critical mass of users for the test to be
realistic: If most of the people you want to call do not have a video
connection, you will not rely on the system. Thus, on the one hand
field testing is necessary to learn about changes in the users’ long-
term behavior, but on the other hand such studies will be very
expensive. Therefore, one will want to supplement them with
heuristic evaluation and laboratory-based user testing such that the
larger field population does not have to suffer from glaring
usability problems that could have been found much more cheaply.
Iterative design of such a system will be a combination of a few,
longer-lasting “outer iterations” with field testing and a larger
number of more rapid “inner iterations” that are used to polish the
interface before it released to the field users.

Similarly, interviews and questionnaires may be combined by
using open interviews with a small number of users for explor-
atory analysis to define specific issues that are to be covered in
closed questionnaires mailed to a large number of users.

226

ekl Sl e

Chapter 8 Int@face Standards

User interface standards have become the object of increasingly
intense activities in recent years [Abernethy 1988; Holdaway and
Bevan 1989], including work in the International Standards Orga-
nization (ISO) [Brooke et al. 1990] and the European Union [Stewart
1990]. Work is also going on in national standards organizations
[Dzida 1989] and in several major computer companies [Berry
1988; Good 1989; Tognazzini 1989; Wolf 1989]. These activities are
part of a general current interest in information processing stan-
dards [Berg and Schumny 1990] but are also based on the widely
held feeling that consistency is one of the most important usability
considerations [Nielsen 1989c]. Even though consistency is obvi-
ously not the only usability factor [Grudin 1989], there are still
good reasons to strive to obtain it in balance with other usability
considerations [Nielsen 1990e] in a usability engineering process,
and such additional considerations are indeed also included in
many current standards activities.

User Benefits from Consistency and Standards

Consistency normally enhances the users’ possibility for transfer of
skill from one system to another. By doing so, interface standards
lead to ease of learning and ease of use, thus lowering training
costs. In several studies, consistency reduced training time to
between 25-50% of that needed for inconsistent interfaces [Polson

227

Usability Engineering

1988]. Consistency improves the users’ productivity by leading to
higher throughput and fewer errors because the users can predict
what the system will do in any given situation and because they
can rely on a few rules to govern use of the system. The smaller
number of errors and shorter learning time again lead to improved
user satisfaction with the system and fewer frustrations with
systems which the user cannot use. Finally, consistency strengthens
users’ expectations with respect to being able to use new software,
leading to feelings of mastery and self-confidence.

Relying on a single interface standard will lead to reduced require-
ments for user support because users will not request help as
frequently when all software is consistent. And the support that
has to be offered anyway will be less expensive because support
personnel will not have to learn so many different interfaces them-
selves.

For a user interface standard to increase usability in the resulting
products, two conditions have to be met: The standard must
specify a usable interface, and the standard must be usable by
developers so that they actually build the interface according to the
specifications. As reported by Potter et al. [1990], a user interface
may have usability problems even when an interface standard is
followed without violations, but luckily, most interface standards
seem to specify reasonable interfaces.

Vendor Benefits from Consistency and Standards

If a vendor company has defined an architecture for consistent
interfaces, then that definition can form a coherent basis for
company expansion. Because every deviation from this basis will
stand out and be the subject for investigation and in-depth discus-
sions, the architecture can retard spurious innovation so that
company products evolve in a controlled manner. Having a stan-
dard interface will reduce development costs, both with respect to
designers (who will not have to design every aspect of the inter-
face) and with respect to programmers (who may reuse code that
implements standard aspects of the interface). In interviews with
developers in a company having a user interface standard, one
major reason mentioned for wanting a formal standard was that it

228

Interface Standards

helped minimize wasted time during project meetings. Prior to the
introduction of the standard, a lot of time was spent arguing about
minor interface-design details whereas now it was possible to close
such discussions rapidly by referring to the standard, thus making
it possible to concentrate on higher-level matters [Thovtrup and
Nielsen 1991]. In the same way, consistency can lead to reduced
maintenance costs, first because the initial interface implementa-
tion will be built on a solid foundation, and second because all
systems following a given standard will evolve together, again
leading to reuse of any design and code changes.

Because of the ease of use and learning mentioned above, consis-
tent software can be expected to lead to increased software
consumption and thus to larger sales. For a given vendor that has a
special interface architecture, that interface style will lead to better
product positioning in the marketplace (the notion of product
families) and to the development of a new market segment
consisting of those users who have already bought some of the
vendor’s products and who are likely to buy additional products
from the same vendor to insure consistency with the interfaces
they already know.

Consistent software has the potential for leading to more aesthetic
user interfaces because the different aspects of the interface comply
with a single underlying norm and because (presumably) a signifi-
cant human factors effort has been invested in the design of the
interface architecture. Designers may then build on this foundation
and could be expected to produce more creative designs when they
are allowed to focus on designing those aspects of a product which
are unique to that product rather than having to reinvent every
interaction technique needed for a complete interface. And finally,
consistent software simply fulfills a market demand since compli-
ance with user interface conventions will in itself lead to better
reviews of software in the trade press. In many cases, consistency
of the user interface is one of the checklist items covered in maga-
zine reviews of software packages.

229

Usability Engineering

The Dangers of Standards

Even though a finished standard will save development costs for
the individual product, arriving at a good standard is a costly
process in itself, and the time and money needed to develop the
standard must be invested up front before it can be used, thus
possibly leading to delay for the products that are to be based on
the standard. There may also be a conflict between taking the time
required to develop a good common user interface versus the pres-
sure to get the first product out the door. Rosenberg [1989] esti-
mates that it takes about five products to break even. Having a
standard also implies an overhead in the software lifecycle to
ensure conformance and some need for evaluating whether new
user interfaces are in fact consistent. It may even be necessary to
have some kind of enforcement in place. It is difficult to assess
conformance with a standard in an area as fuzzy as user interfaces,
so one may have to conduct experiments to get empirical verifica-
tion of consistency.

A defined common user interface risks being a lowest common
denominator to the extent that one wants to incorporate a large
installed base of perhaps somewhat primitive interfaces. In any
case, the common user interface might be stifling for innovation in
new products and introduce resistance to change even where
change is needed. The very idea of consistency also implies
reduced flexibility in the design of individual products so that they
may not be able to be as tailored to application-specific require-
ments or contexts. In addition, a standard may not just prevent
enhancements, but it could even enforce bad design if it includes
poor rules.

From an organizational perspective, having a corporate standard
might lessen motivation among developers if they feel that they do
not share ownership of the user interface. And the very fact that
one has a formalized program for consistency could mean that
standards compliance could distract from other design issues,
perhaps to the extent that developers feel that they do not need to
take other human factors considerations into account as long as
they follow the standard. By the same token, too much focus on a

230

Interface Standards

common user interface could promote “foolish” consistency in
cases where good design would deviate from the standard.

Some of the disadvantages of user interface standards can be
avoided by having a formal program in place from the start to
amend the chosen common user interface according to new needs
and new technologies. If one does not let a standard evolve, then
either new products will become steadily more obsolete or devel-
opers will utilize new technologies and interaction principles
without regard to commonality, leading to an erosion of consis-
tency.

8.1 National, International and
Vendor Standards

The three main types of standards are national and international
standards, industry standards, and in-house standards. Even
though a few national [DIN 1988] and international standards have
been passed, and more are under way, it is likely that this poten-
tially most-restrictive form of standard will actually have the least
importance due to the slow-moving nature of international stan-
dards bodies as compared with the changing nature of the
computer field. Luckily, many of the participants in the various
international standards groups have recognized the potential
disaster in legislating a standard that would restrict developments
in user interfaces to the current state of the art. Therefore, most
standard proposals tend to specify broad principles or perfor-
mance levels to be achieved rather than specifying exactly how the
interface should look.

See the regular column “The Standards Factor” in the ACM
SIGCHI Bulletin for progress reports on the standards activities in
ISO (International Standards Organization), ANSI (American
National Standards Institute), and several other standards bodies.

International standards may gain special prominence in the years
to come because of the European Union directive (discussed on

231

Usability Engineering

page 10) stating that as of 1993, “Software must be easy to use” and
“The principles of software ergonomics must be applied.” These
phrases are obviously not very precise, so it is likely that the
member countries will require supplementary regulations in order
to implement the directive. These supplementary regulations may
very well turn out to be references to ISO standards, which again
may mean that ISO compliance could become desired (or even
mandatory) for software used in Europe.

For practical development purposes, the industry standards
promoted by various operating system and window system
vendors may be more important than the international standards.
These industry standards tend to specify the look and feel of user
interfaces in great detail. Unfortunately, these standards are mutu-
ally conflicting with respect to many of these details even though
they mostly follow the same overall interaction style.

Because of the differences between the various industry standards,
developers should take great care when moving between platforms
not to subject their designs to interface contamination, where
details from other standards creep across platforms. Similarly,
designers who have been using a different standard in the past
should be given explicit training in the differences between stan-
dards when transferring to designing for another platform [Nielsen
et al. 1992].

Vendor standards are currently focused on the lower levels of
dialogue design, with most emphasis on alphabetical and lexical
issues such as what should happen when the user presses down
the mouse button and how a hierarchical pop-up menu should
look. They provide less guidance at the syntax level, though they
still often provide some broad principles for issues like the layout
of dialog boxes. Typically, it is possible to design quite different-
looking interfaces for the same application under any given vendor
standard. This may be an advantage from the perspective of soft-
ware developers, but it does indicate the need to supplement the
chosen vendor standard with a more detailed in-house standard.

232

Interface Standards

In contrast to their extensive coverage of low-level issues, vendor
standards typically do not address the semantic and task levels of
dialogue design (except for a few rules like the use of undo, which
is not even always specified in sufficient detail for all applications).
Because of this emphasis on the lower levels of the dialogue,
vendor standards cannot guarantee usability of the overall inter-
face, leaving a need for designers to rely on other usability engi-
neering methods.

Most parts of the main international standard in the user interface
area, ISO 9241, had not been released in final form as of this
writing. From the drafts it seems that it will contain considerably
more emphasis on the semantic and task levels of dialogue design,
which will make it hard to verify whether a given interface is stan-
dards-compliant. Also, it remains to be seen whether developers
will be able to follow these more loosely specified rules.

8.2 Producing Usable In-House
Standards

With respect to both international standards and industry stan-
dards set by major vendors, most developers will have to accept
the standards as they are given to them. For standards that are
developed locally within an organization, however, it is possible to
aim for a high degree of usability of the standard itself. The goals
should be to produce a standard that the developers can actually
understand and apply and to maximize the compliance of the
resulting products. The latter goal may be difficult to measure until
it is too late, but the understandability of the document can be
assessed and improved with standard usability engineering
methods.

Two approaches that have proven successful for the usability
testing of standards are to ask some designers to design a small toy
interface using the standard, and to show them another small inter-
face with a number of standards violations and ask them to list the
violations [Thovtrup and Nielsen 1991]. The designers’ use of the

233

Usability Engineering

standards document can be observed during these tests, and one
can even ask them to think aloud (see Section 6.8) to assess the ease
of use of the document. The resulting toy designs can be checked
for conformance, and the designers’ lists of violations in the test
interface can be compared with the true solutions to see which
violations were overlooked and which legal design elements were
spuriously claimed to be violations. These results can be used to
assess whether the standard can be applied in practice and is likely
to lead to consistent interfaces.

Not much research is available on this topic yet, but existing
evidence does indicate the potential for “meta-usability problems”
(usability problems in a usability document). Mosier and Smith
[1986] reported that only 58% of the users of a large collection of
interface guidelines found the information they were looking for
(an additional 36% “sometimes found it”). de Souza and Bevan
[1990] had three designers design an interface using a draft of the
ISO standard for menu interfaces and reported that the designers
violated 11% of the rules and had difficulties in interpreting 30% of
the rules. The draft standard was improved after the experiment,
so the main lesson from this study is the need for usability testing
of usability standards.

Similarly, Thovtrup and Nielsen [1991] reported that the compli-
ance of student projects with a very simple standard was measured
at no more than 71% and that 3 real products from a major software
house violated between 7 and 12 of the rules in that company’s
standard. In other words, user interface standards are difficult to
follow, so just releasing a document to a company’s various
product teams is not likely to be enough to guarantee compliant
and consistent interfaces.

Experience shows that the body text of a standards document is the
least important element in communicating a standard [Tetzlaff and
Schwartz 1991; Thovtrup and Nielsen 1991]. Developers pay
considerably more attention to the examples in a standard and to
any lists and checklists, such as lists of approved terms or recom-
mended function-key assignments. Two lessons from this observa-
tion are to include plenty of examples in a standard and to take

234

Interface Standards

extreme care that the examples are very well designed and
completely compliant with the standard. Also, the examples
should not include design elements that are not part of the stan-
dard (at least not without explaining that any such elements are
optional), since designers will pick up such elements from the
examples in the belief that they are part of the standard.

In addition to printed examples, standards can be communicated
by the distribution of exemplary applications: a small number of
applications developed to instantiate the common user interface
that one would like other applications to follow. When designing
new applications, designers tend to emulate the way existing
applications do things, so it is important to provide good role
models. Examples can also be communicated by animations or
other hypermedia techniques, as was done on the Apple CD-ROM
Making It Macintosh [Alben et al. 1994] with about 100 animated
illustrations and explanations of approved interaction techniques.

Standards compliance is also an organizational issue. Developers
need to feel that consistency is part of the corporate image. They
can also be made aware of the need for consistency through “art
exhibits” of consistent interfaces [Good 1989], internal computer-
ized bulletin boards with interface discussions and standards inter-
pretations, and by “evangelists” spreading the word to developers
and to the users (to build pressure on the developers). Different
groups of developers may interpret the same standard differently,
leading to inconsistencies across products unless steps are taken to
increase cross-group communication.

One method for cross-group communication is called consistency
inspection [Wixon et al. 1994]. Consistency inspection is a usability
inspection method aimed at finding inconsistencies among a set of
user interface designs. Each interface is inspected one at a time by a
team of evaluators consisting of one representative from each of
the development groups. Step by step, elements of each interface
are reviewed and notes are made of any inconsistencies with the
way any of the other systems do things. Some inconsistencies are
easy to resolve during the inspection session, either with reference
to the user interface standard or because the nature of the designs

235

Usability Engineering

make one of the solutions clearly better than the other. Other incon-
sistencies are harder to resolve and should be left for future discus-
sion, user testing, or additional design work.

A variant of the consistency inspection is the synergy review which
takes place earlier in the lifecycle before the interface has been fully
designed. In the same way as with a consistency inspection, the
participants in a synergy review are drawn from multiple projects,
and they also review the interfaces one at a time. However, since
the interfaces have not been fully designed yet, the synergy review
focuses on finding potential similarities and overlaps between the
interfaces as conceived in the early stages of design and not on an
inspection of design details. The outcome of a synergy review is a
list of interface elements and features that are likely to be shared by
two or more of the projects. For example, multiple interfaces being
developed by a given company might have a need to allow the
user to choose elements from a long list or to monitor changes in
the state of a number of processes. Such common design elements
are prime candidates for coordination between projects, and
having discovered them up front not only helps ensure consistency
but also minimizes duplicate efforts and promotes sharing of
design ideas, test results, and possibly even user interface imple-
mentation code.

236

chaptero International User Interfaces

International user interfaces are those that are intended for use in
more than one country. Designing international user interfaces
may or may not involve language translation, but it should
certainly involve consideration of the special needs of other coun-
tries and cultures. Increasing technological sophistication in many
countries of the world and the resulting larger world trade imply
greater need to pay attention to international aspects of user inter-
faces. A growing number of American companies have reached a
situation where most of their sales are outside the U.S. (in 1991 four
of the five largest U.S. computer companies derived more than 50%
of their sales from abroad [Russo and Boor 1993]). Companies in
smaller countries often have a very large, or even dominating,
proportion of their sales outside their own country.

Viewed from the vendor perspective, this large number of interna-
tional sales means that software sales will increasingly depend on
the international usability of products and not just their domestic
usability. And seen from the users’ perspective, more than half of
the world’s software users will soon be using interfaces that were
originally designed in a foreign country. Usability for this large
number of users will depend upon increased awareness of the

issues in designing user interfaces for international use [Nielsen
1990f].

237

Usability Engineering

As the European Union (previously named the European Commu-
nity) is establishing the so-called Single Market, international soft-
ware is becoming even more important in that part of the world
with the growth of cross-frontier trade and with more companies
becoming multinational. It is important to realize, however, that
the Single Market is not a “single” market in the sense that all
Europeans can now be treated the same. The language differences
have not gone away and the cultural differences between the
regions will also remain. So the European Single Market has actu-
ally increased the need to pay attention to the issues discussed in
this chapter.

In an unpublished study from 1990, Tim Frank Andersen from the
Technical University of Denmark analyzed software reviews from
various personal computer magazines published in Denmark, the
UK., and the U.S. The American software reviews contained prac-
tically no discussion of international usability issues (0.06
comments per review). In contrast, the average British review
contained 0.41 comments on international usability issues, and the
average Danish review contained 0.80 such comments. These
numbers clearly indicate the difference in importance of interna-
tional issues in these countries: Most software is currently designed
directly for the American market and therefore normally needs no
further modifications to support local needs. The U.K. has almost
the same language as the U.S., and can therefore often use Amer-
ican software with little modification. In contrast, Denmark has a
different language, including the special characters @, ¢, and 4,
leading to greater needs for local customization. One would of
course expect even greater emphasis on international usability
issues in countries with more elaborate special needs such as the
extensive character sets used in many Asian countries [Sukaviriya
and Moran 1990].1

1. A case study of the transfer of a Japanese software package to the Ivory
Coast also emphasized the need to consider the different infrastructures and
user attitudes in different cultures [Tousséa-Oulai and Ura 1991].

238

International User Interfaces

International usage issues thus play a major role in smaller and
non-English speaking countries, even though they may be invisible
to users and developers based in the United States [Sprung 1990].2

9.1 International Graphical Interfaces

At first sight, it might seem that the current trend toward graphical
interfaces and the use of icons instead of words might solve the
international use problem. This is not so, however, as icons and
color connotations are not necessarily universal. For example, a
mailbox icon is often used in electronic mail applications, but mail-
boxes actually look very different in different countries. I certainly
remember being very insecure about whether I was using an “offi-
cial” mailbox the first time I mailed a postcard in Brussels.

Icons can be classified in three categories according to their graphic
design® [Lodding 1983; Rogers 1989]:

1. Resemblance icons: Depicting a physical object which the icon is
intended to represent. Using a picture of an envelope to repre-
sent a file of electronic mail would be a resemblance icon.

2. Reference icons: Depicting some object which by reference or
analogy might represent the concept the icon is intended to
represent. For example, using a picture of a clamp to represent a
file-compression utility (because it squeezes) would be a refer-
ence icon. It would be hard to come up with a good resem-
blance icon for file compression except through use of a before—

2. English-speaking readers wanting to get a feel for mistranslated user inter-
faces can find an annotated example in [Nielsen 1990h]. See also the example
in Exercise 13 on page 276.

3. Icons and other graphic interface elements can also be classified in three
categories according to the role they play when being used: signals (informa-
tion sensed at the skill-based level, such as braking when you see a red traffic
light), signs (information derived from rule-based behavior, such as adjusting
your speed based on whatever the latest speed limit posting read), and symbols
(information deduced by knowledge-based reasoning, such as puzzling out
the meaning of unfamiliar icons in a foreign airport) [Rasmussen 1983]. These
two classifications are different taxonomies of graphic design and usage
circumstances, even though they use some of the same terms.

239

Usability Engineering

after combination of a large and a small document, but icons
showing state changes are notoriously hard to understand.
Reference icons are sometimes also called symbolic icons or
index icons.

3. Arbitrary icons: Arbitrary shapes that only have meaning by
convention. Traffic signs are often arbitrary icons and may form
a good source of computer icons because of their fairly stan-
dardized international use. For example, a warning triangle
might be used as the icon for a warning message. Obviously,
arbitrary icons are the hardest for users to learn, unless they are
so widely used that the convention becomes second nature. For
example, it is doubtful that many people worry that the shape
“?” is completely arbitrary as an indicator of a question.

The mailbox problem is due to different countries having different
designs of the physical object depicted by the icon. Even so, resem-
blance icons will often be reasonably recognizable in many coun-
tries, at least if they depict fairly common objects. Pictures of
uncommon objects may be harder to recognize, as shown by the
test in Hungary of proposed international icons for sports. Only 9%
of Hungarians correctly interpreted the icon showing a squash
player, because most Hungarians have never seen a game of
squash [Brugger 1990].

Reference and arbitrary icons will often do considerably worse
than resemblance icons in internationalization. Even in cases where
an arbitrary icon has a wide international following, it may be
unknown in some countries, as indicated by the 13% recognition
rate in Japan of a first-aid icon based on the Red Cross logo
[Brugger 1990]. Varying national conventions may reduce the
usability of designs that are intended to be reference icons. For
example, a picture of a (dining) table can be used as a reference
icon to represent a table of numbers that can be popped up in a
hypertext system. The analogy between tables as furniture and
tables as typographical objects only holds if the user speaks certain
languages, however. In many other languages, completely different
words are used for the two concepts (for example, bord and tabel in
Danish), and the table icon would be reduced to the status of an

240

International User Interfaces

X Font Substitution? [/] Font Substitution?

Figure 22 Two possible checkbox designs for a graphical interface. The
left example would be interpreted by many Japanese as meaning that fonts
should not be substituted.

arbitrary icon for users speaking those languages. In general, inter-
face puns? are dangerous, though they can be hard to resist.

A further problem with internationalization of graphical interfaces
is the total lack of tradition for involving graphic designers in the
translation process. Translating the word “mailbox” to “postkasse”
or some other appropriate term can be done easily by string substi-
tution if the application is constructed according to the resource-
separation principle discussed on page 251, but redesigning a
mailbox icon requires graphic design talent.

Even noniconic graphics can lead to problems as illustrated in
Figure 22. Since an X-mark is normally used in Japan to signify that
something is not wanted, the leftmost dialogue element would
often be misinterpreted in Japan.

As a further example, the use of italic typefaces to add emphasis to
text in a graphical interface may not be appropriate when the text is
in kanji. Instead, some word processors sold in Japan have added

an amikake formatting feature, where a [shaded box| is placed over
text for highlighting.

Gestural Interfaces

Just as icons are not necessarily universal, gestures like those used
in pen-based computers and some virtual reality systems may
need scrutiny for international usability. As an example, proof-
readers’ marks are often used for editing in pen interfaces, even
though they have their roots in typographical traditions that may
differ between countries. For example, the American mark for

4. Visual puns can be funny and engaging in certain applications such as
entertainment and education. See Figures 4.15 and 4.16 in [Nielsen 1990a] for a
good example of a visual pun in a nonverbal hypermedia system for children.

241

Usability Engineering

inserting a blank space is #, whereas the corresponding Danish
sign is |. Even vocabulary differences may cause changes in
gestural systems, as shown by the need for twice as many words in
the German version of the Newton handwriting recognizer as the
English version because of the long German words [Flohr 1994].

9.2 International Usability
Engineering

Basically, an international interface is a new interface and should in
principle be subjected to exactly the same usability engineering
process as any other interface. This is true whether the interface is
translated or used in its original version by users from another
culture. Of course, it is often possible (and necessary) to make do
with less than a full-blown usability effort and still ensure interna-
tional usability, assuming that the original version of the interface
has been developed according to good usability methodology.

As always, the main usability engineering activities are early focus
on users and their tasks and empirical user testing with users from
the foreign country. Furthermore, any translation should be
performed by a translator with knowledge of the usability princi-
ples for interactive systems since it is not enough to be good at
traditional, static translation.

For example, graphics programs often have a special drawing grid
that may be activated to restrict the pen from moving freely. An
English version of one such program used a menu with the
commands Turn Grid On and Turn Grid Off to switch between
the two drawing modes. The Danish version, however, used the
commands Med net (“use grid”) and Uden net (“without grid”),
respectively. Several test subjects were observed to have problems
with these commands: Novice users did not realize that these two
commands toggle the same option because they look sufficiently
different to a user quickly scanning the menu, where only one of
the commands is displayed at any given time. The English version
starts with the same two words for both commands, thus

242

International User Interfaces

improving the likelihood that a novice user will recognize them
when scanning the menu. Also, the English commands have more
active connotations, implying in what direction the drawing mode
will change if a command is selected. The Danish versions are more
passive, which led some users to think that the command
displayed in the menu was indicating the current drawing state
rather than being the name of the opposite drawing state (which
one can change to).

Each of the translated menu items was perfectly adequate when
seen by itself as a static interface element. But when they were used
as part of an interaction (inherently dynamic), several users errone-
ously reversed their meaning. Even experienced users sometimes
made this mistake. This example shows the need for attention to
the principles of dialogue design even during a translation: Details
do matter! The example also shows the need for empirical testing
with real users since the problem only occurs for novices.

Since the translation is embedded in an interactive environment,
one can help the translators avoid many usability problems by
providing them with the rationale for the original interface design.”
If translators know why a certain word was chosen in an interface,
they can better choose a translation that has the same connotations.
Knowledge of the intention of the original wording would have
avoided the problem in the Russian section of a multilanguage
phrase book for tourists which translated the phrase, “There’s a
bug in my hotel room,” to “There’s a listening device in my hotel
room.”® As a more computer-related example, if the name File
was chosen as a menu title to be consistent with an industry stan-
dard, it would be best to translate it to whatever term is used in the
translated standard rather than another word that may seem more
appropriate at first sight. The design rationale should include the
main conclusions from the user tests of the original interface to
reduce the risk that a translator will introduce known usability
problems.

5. See page 108 for further discussion of design rationales.
6. New York Times, May 12, 1991, p. A28.

243

Usability Engineering

While observing a word processor user in France, I found that she
consistently confused the two search commands in the system. One
command searched the current document for the next occurrence
of some specified text, and the other command searched the file
system for files containing some specified text. In the English
version of this menu-based word processor, the first command was
called simply Find, whereas the second was called Find File.In
the French version, both commands were called Rechercher
(which means “find”), with the only distinction being that the
document-specific command was in the edit menu and the file
system command was in the file menu. The user, however, did not
pay much attention to the menu headings but just grabbed the first
Rechercher command she happened to come by, thus often
getting the wrong one and being very confused by the result. This
problem might well have been avoided if the translator had been
given access to a design rationale outlining the usability consider-
ations behind the original choice of the command name Find
File,

Similarly, it is a good idea to develop glossaries with translations of
each of the important terms relating to your application for each of
the languages you plan to translate to. Many of the terms in such a
glossary can be reused from existing user interface standards, and
it is a good idea to look at the multilanguage lists of common terms
found as appendices to some of the major vendor standards, even
if your design does not otherwise follow these standards. You do
not want your users to be talking about the translated equivalent of
“viewport” if all other users in their country use a term corre-
sponding to “window” for the same concept. In addition to using
generic user interface terminology like “window,” “scroll bar,” etc.,
most systems probably also have application-specific terms that
need to be translated by specialists in the appropriate domain in
order to build an application-specific glossary. Having such glossa-
ries ensures consistency in translations of different elements of the
total interface (screen designs, manuals, instructional materials,
etc.), even if they are translated by different translators. Without a
glossary, even a single translator may have difficulties due to the
verbal disagreement phenomenon (there are so many different

244

International User Interfaces

terms for any given concept, that two different people will
normally pick two different terms when asked) [Furnas et al. 1987].

Many interfaces are used in other countries without translation.
This can be either because those other countries are too small or
poor to support a translation effort or because the software is too
specialized to have more than a few users in each country. Use of
untranslated software can also be caused by a desire for internal
standards in a multinational company or by the presence of
foreigners in the country where the software originates. Therefore,
it is desirable to design interfaces and documentation such that
they have as high an international usability as possible, even if they
are not translated. Doing so will also make the job of any translator
easier.

International usability of written materials obviously rests on the
avoidance of complicated language in terms of vocabulary and
sentence construction [Kincaid et al. 1990]. Whether you talk about
the English bull in a china shop or the Danish elephant in a glass
shop may not matter all that much, but many idioms can be very
difficult to translate and understand and should be avoided in
writing manuals.” To stay with animal examples, what do I mean
when I say that “there is no cow on the ice?”8 Similarly, manuals
and tutorials should not use examples that are overly dependent
on local culture, including sports like baseball or cricket which are
only popular in some countries.

To ensure optimal translations, at least one translator on the team
should be a resident native of the target country, since expatriates
lose touch with details of the language after a few years abroad. As

7. Further translation difficulties may arise from using derivative words with
expanded meanings. Doing so seems to be especially easy and common in
English—or at least in the style of English where “all nouns can be verbed.”
For example, the title Goodies for a menu with utility features in a program
may seem appropriate and perhaps slightly chic to American users. This menu
title can lead to problems, however, if a literal translation is chosen that makes
the user think of candy.

8. No cow on the ice = no serious difficulties to overcome (Danish idiom). To

appreciate the meaning, consider what you would do if you were a farmer and
one of your cows had walked out on the ice.

245

Usability Engineering

an admittedly extreme example, a propaganda leaflet dropped in
millions of copies by U.S. peacekeeping forces when they entered
Somalia in December 1992 included a picture of an American
soldier shaking hands with a Somali man. The intended caption
was “United Nations,” but because of a mix-up in the vowels, it
actually read “Slave Nation.” This problem occurred because the
only available translator with military clearance had emigrated
from Somalia many years earlier.”

A software design may have to be customized even if a full transla-
tion is not performed. The need for such customization becomes
more apparent in computer-supported cooperative work (CSCW)
[Ishii 1990] and other forms of software that are more dependent
on cultural and organizational norms than traditional productivity
software for individual use.

As a concrete example of the need for customization, software with
a search function may assume that individuals can be located by
first searching for their family name and then picking the desired
person from a menu. First, it is of course necessary to realize that
the family name is actually the first name in many cultures, so
simplistically hardwiring the search to look for last names will not
do.1% Second, some countries have a much smaller variability in
family names than, say, the U.S. For example, the two most
common Danish family names (Jensen and Nielsen) are each
shared by 6% of the population, and the five most common family
names account for 24% of all Danes [Sendergaard 1987]. A search
for employees named Jensen or Nielsen in a Danish company
would generate many screenfulls of people!! (including many with
the same first name), so the search interface would have to be

9. New York Times, December 27, 1992, p. 10.

10. There are even further variations on this theme to be considered. In
Iceland, names are similar to the European naming system with the “first”
name first, but telephone directories and other listings are sorted by first name
since the last name is not really a family name in the normal sense but rather a
patronymic. The main lesson is the need to avoid any hardwiring of assump-
tions.

11. See [Nielsen 1990f] for a further discussion of the international naming
problem.

246

International User Interfaces

modified to be of any use. Such individual circumstances for
various countries will be much easier to take into account if they
are known before the initial implementation of the software.

Finally, care should be taken not to limit software design by arbi-
trary assumptions that happen to cause no problems in the country
where the software is developed. In one case, an American air
traffic control system could not be used in London because it did
not distinguish between positive and negative longitudes (most
countries are located in a single hemisphere, after all), causing the
system to fold its model of the airspace around London at the
Greenwich 0° line [Lamb 1988].

To ensure that the recommended early focus on users and their
tasks also includes international users, it is necessary to facilitate
communication between the development organization and the
company’s international division or sales staff. International repre-
sentatives should be involved throughout the early product plan-
ning stages and should be encouraged to comment on the special
needs of their various markets.

9.3 Guidelines for Internationalization

Several practical considerations need to be embedded deeply in
any implementation to ensure that the resulting code will be useful
overseas instead of breaking because of some implicit assump-
tion.!? This section lists some of the most common mistakes and
advises how to avoid them. See [del Galdo 1990] for a more
detailed list of internationalization guidelines.

12. The Localization Industry Standards Association (LISA) is an association
of companies interested in the localization, documentation, and translation of
their products. Address for further information: 9B chemin Castan, CH-1224
Chene-Bougeries, Switzerland, +41 22 349 2222, fax +41 22 349 8977, email
Anobile. LISA@applelink.apple.com or manobile@divsun.unige.ch.

247

mailto:LISA@applelink.apple.com
mailto:manobile@divsun.unige.ch.

Usability Engineering

Characters

Many countries have character sets that extend beyond the A-Z
alphabet used in English and the original ASCII character set. The
most obvious guideline is to accommodate whatever is the local
character set, and a further guideline is to treat additional local
characters as “first class citizens” and allow them to be used in
variable names, filenames, etc., on an equal footing with the A-Z
characters.

Many countries (especially in Asia) have very large character sets
that cannot be encoded in the 256 different values of an 8-bit byte
[Lunde 1993]. Often, 16 (or more) bits are used to represent each
character, and the software needs to be able to handle that. Many
other countries (including most European countries) have char-
acter sets that extend the original 7-bit ASCII code with a few addi-
tional characters but still fit within an 8-bit byte. Software will
break in these countries if it routinely strips away the eighth bit in
character codes on the assumption that ASCII codes only have
seven bits.

Handling of character sets becomes even more complicated if
several languages need to be represented in the same document
[Becker 1984] or on the same computer, which is a common need
for many users, including most multinational companies. Two
current approaches to truly international character sets are the
Unicode two-byte standard and the ISO 10646 four-byte standard
[Sheldon 1991].1

Even assuming that an extended character set is accepted, true
localized handling of different character sets requires that one
abandons any simplistic reliance on the numeric values of the char-
acter codes. For example, a translation from lowercase to upper-

13. The main difference between Unicode and ISO 10646 is the treatment of
Japanese, Chinese, and Korean ideograms (kanji, etc.). ISO 10646 and Unicode
1.1 are identical in two-byte format, cramming all the ideograms into a single
Han set, eliminating duplicate characters. ISO 10646 has, in its definition, the
flexibility to eventually allow full character sets for each language, using UCS-
4 (four-byte format). Further information is available by anonymous FTP from
the host unicode.org on the Internet.

248

International User Interfaces

case characters cannot be done simply by adding 26 to the numeric
value of the character, since one would want, for example, @ to be
mapped to £ even though these two characters may not be 26
positions apart in the character encoding. Similarly, sorting has to
take special characters into account, such as &, 4, 2, é, ¢, 6, 6, 9, fi, ¢,
i, and B8 (a German character that should be sorted as if it were two
characters (ss)'4).

In some countries, 6 is sorted as an o, and in other countries, it is
sorted as a separate letter toward the end of the alphabet. Inconsis-
tencies like this indicate the need for separate sorting functions for
each country. Also, some languages have slight differences,
depending on whether the items being sorted are names or regular
words. Unfortunately, even within the same country, collation
tables used by different vendors sometimes have tiny differences,
and may not always correspond exactly to national standards.
Thus, a set of words may be alphabetized differently, depending on
what platform the software is running on, even if the software
follows the appropriate localization rules and collation tables.
Following the appropriate national standards for each country is
probably the best solution for applications that are intended to be
used across multiple platforms. See [Canadian Standards Associa-
tion 1992] for an example of a well-planned sorting standard that
considers multilingual texts.

Kanji character sorting is even more difficult. For example, names
are phonetically sorted in Goju-on (AIUEO) order. To do this, one
has to estimate how a character is read (pronounced) in each partic-
ular name. Many systems use a name dictionary for this purpose,
but a single dictionary entry for each name is not always sufficient.
In some cases, the reading of a name depends on the district where
the person came from or the history of his or her family.

14. The reverse problem also exists. In Danish, the two-character sequence aa
is mostly sorted as if it were the single character a. To make things really diffi-
cult, the exact sorting depends on how the word is pronounced. In Spanish,
“ch” is considered a single character (sorted between “cz” and “d”), as is “11.”

249

Usability Engineering

Numbers and Currency

Different notations are used for numbers in different countries. The
main difference is probably the character used for the decimal
“point,” which is a period in some countries and a comma in
others. Typically, the character that is not used as a decimal sepa-
rator is then used as a thousands separator, though white space is
sometimes used instead for the thousands separator. Also, some
countries use special symbols ($, £, f, etc.) to indicate their currency
and others use abbreviations (DM, kr., etc.). These symbols and
abbreviations go before the number in some countries and after in
others. Thus, ten thousand currency units can be written as

¢ $10,000.00 (in the United States)
¢ 10.000,00 kr. (in Denmark)

Furthermore, even though it seems that most countries use two
decimals in their currencies, a few countries use three, and some
countries only have full currency units and use no decimals.

Time and Measurement Units

User interfaces need to handle different measurement systems,
with the most important being the SI system (Systéme Interna-
tional) of metric units and the American system of inches, feet,
miles, Fahrenheit, etc. The time of day is sometimes written in a 24-
hour notation (e.g., 22:00) and sometimes in a 12-hour notation
(e.g., 10:00 PM).

Different notations are also in use for writing dates, with the most
common probably being

* D/M/Y (for example, 5/10/93 for October 5, 1993)

* D/M-Y (for example, 5/10-93)

* M/D/Y (for example, 10/5/93 or 10/05/93)

* YM.D (for example, 1993.10.05)

* Y-M-D (for example, 1993-10-05)

These notations can certainly be confusing: Is 10/5/93 the tenth of
May or October fifth? To avoid misunderstandings, it is highly
recommended to write out the name of the month with letters in

250

International User Interfaces

international communications rather than giving its number. For
use within a single country, numeric representations may be
preferred because of their compactness and because they allow
easy estimates of time intervals. In either case, software should
allow for local date formats and for use of the local names of
months and the days of the week.

In addition to the specification of dates and months, the use of
week numbers is very common in Europe. For example, one may
list a meeting as taking place during Week 25 (the 25th week of the
year). Finally, it should of course be noted that some countries use
other calendars than the Gregorian, so one might also have to cope
with transformations between completely different date systems.
For example, in Japan dates are sometimes given with reference to
the year of the Emperor’s reign (but it would be a cultural blunder
to include a feature to update these dates after the death of the
current emperor).

Don’t Despair

The singlemost important advice for the design of international
user interfaces is actually that one should not give up just because
it turns out to be impossible to follow all the guidelines in a given
project. It is better to provide some flexibility than to hardwire
everything with local conventions, even if full flexibility and
support for all the world’s cultures cannot be achieved. Likewise,
the inclusion of a few foreign users during user testing is still much
better than to proceed on the basis of information from domestic
users only, even if full tests cannot be conducted in all potential
user countries.

9.4 Resource Separation

One of the major ways to achieve improved international usability
in practice is to separate the interface and the system’s function-
ality in the implementation [Edmonds 1991]. In traditional ways of
writing software, the user interface specification was deeply inter-
twined with the rest of the code, normally to the extent that the

251

Usability Engineering

character strings that were to be issued as prompts and error
messages were part of procedure calls in those parts of the code
that needed the prompts and messages. Obviously, the translation
of such software is quite difficult and requires access to, and
perusal of, the source code.

Newer systems have started to store the specification of the user
interface in separate resources that are integrated with the rest of
the code when the application is run. For example, when all text
strings that are to be seen by the user are stored in one location, it
becomes a simple matter to translate them. Often, system messages
need to include references to user data that is not known until run
time, but such references can be inserted as parameters in the
message text. It is important to have the capability to switch the
order in which the parameters are displayed at run time in case a
different word order is required by some language. For example,
the string “Copy file <#1> to disk <#2>?"” could be stored in the
resource database and would generate the text “ Copy file
Chapter 9 to disk Backup?” when the question is actually
asked. Other languages may require phrasing like “Copy to disk
Backup from the file Chapter 92"

Similarly, the specification of window and dialog box layouts for
graphical user interfaces can be stored in resource databases. The
layout specification would include information on the size of the
window and the relative location of each element, including text
strings, user-input fields, and icons. The icons would be stored
elsewhere in the resource database so that they could be edited to
conform to local graphics conventions. Using a special direct
manipulation screen layout editor, it then becomes possible for the
translator to rearrange dialogue elements to suit the local language
as well as resize text fields to make room for additional or longer
words in languages like German. !>

15. In case resizing is not possible, a general guideline for the design of the
original text fields is to leave room for about 30% extra characters in the trans-
lated versions.

252

International User Interfaces

In addition to the resource databases, version control tools are
needed to help translate interface upgrades. Many interface
elements will remain the same, and so should their translations (for
the sake of cross-version consistency). Other interface elements
will change, and even unchanged strings may require retranslation
if they are used in new contexts. Also, a translation tool is needed
to show the translator the various resources in the context in which
they will be used.

In some systems, many local conventions such as the sorting
sequence for characters, the proper way of writing dates, the
names of months, etc., are stored in a central resource base that can
be used by any application. If individual applications integrate
such system-wide resources with their own, they can achieve a
fairly high degree of localization without any further work at all,
since the interface will “magically” take on considerably local char-
acter just by virtue of using the resource stored in the local system.

9.5 Multilocale Interfaces

Localization based on system-wide resources and translation of
application-specific resources is sufficient to support use of an
interface for a single, specific culture. Thus, if you are a German
living in Germany who only communicates with other Germans in
German, then your problems should be solved if all your software
vendors had done a proper job of localizing their systems to
German. Even though many users would find this form of single-
locale support sufficient, there are also many users who need
multilocalized interfaces. Examples would include anybody who
moves to or visits a foreign country as well as anybody who
communicates or exchanges data with people in other countries.

Ideally, each running interface and each datafile should be associ-
ated with a locale that identifies the proper localization needed to
communicate with the current user. If a new user starts using the
system, or if the data is transferred to another country, it should be
possible to select a new locale and have the interface and data
interpretation change appropriately. For example, assume that you

253

Usability Engineering

have a database with prices for certain goods set by a vendor
located in the U.S. One such price might be $1,498.95, and it
should be represented as such if the locale is set to “USA.” If the file
with this price list was sent by electronic mail to a customer in
Germany, the locale would change and the price should be
displayed as $1.498, 95 (butnot as DM 1.498,95).16

Thus, even though the value of the system attribute “local currency
symbol” would change from $ to DM as the locale changed from
USA to Germany, the system should not compromise data integrity
by changing the measurement unit for data that had already been
entered. Of course, the system should take care of the changing
decimal point and thousands separator. Similarly, the database
commands, error messages, and such should change from English
to German as the locale changed. If the German user had a French
visitor, it should be possible for the visitor to temporarily set the
locale to France and operate the system in French.

16. However, even a correct conversion into local notation may be risky. For
example, if the price had been $1,498 (without a decimal point), a German
renderingas $1.498 mightbe mistaken for a per-piece price of about one and

a half dollar, if the German user knew something about American notation
and was cued into a “non-German info interpretation” mode by the dollar
sign. One solution to this particular problem would be to always display the
decimal point, but the general issue is harder: It will be necessary to communi-
cate to users whether information has been localized or not.

254

chapter 10 Future Developments

You will often read about new methods that are supposed to be
available “Real Soon Now” for the improvement of usability
without any of the fear and loathing some people associate with
the usability methods described in this book. As a matter of fact, I
can confidently predict that you will discover such a method
within a few months of reading my book, since there are always
new, supposedly revolutionary, methods being proposed.

Unfortunately, there is no “silver bullet” that will magically solve
the usability problem (the way silver bullets were supposed to be
the way to kill werewolves). If you have just a few years of experi-
ence in the software engineering field, you will no doubt remember
many claims of silver bullet innovations to address the general
problem of software construction. Some of these innovations actu-
ally turned out to improve the software engineering lifecycle, and
others proved more ephemeral. None of them made the funda-
mental problems go away [Brooks 1987]. Plus ¢a change, plus c’est la
méme chose (the more it changes, the more it’s the same thing).

The same level of healthy skepticism that software engineering
practitioners have acquired over the years should be retained for
judging claims of usability engineering silver bullets. The funda-
mental problems of usability engineering are to learn the character-
istics of the actual users and their tasks, to generate creative design

255

Usability Engineering

solutions that map between computer capabilities and these users
and their tasks, and to test the solutions against the infinite poten-
tial for mismatches among the interface, users, and their tasks.
Everything comes back to the two phenomena of individual
humans and real-world tasks [Nielsen 1989d], both of which
exhibit a discouraging tendency to defy predefined restrictions.

Because of this fundamental reality of usability engineering, the
basic need for the methods described in this book will remain, no
matter what improvements and refinements are discovered in the
future. Most usability specialists are actually fairly much in agree-
ment about the fundamentals of usability engineering, even
though they may differ when it comes to detailed recommenda-
tions [Mulligan ef al. 1992]. Of course, improvements are likely to
happen, and I am myself actively working to invent some of them.
The reader should just be warned against the seductive euphoria
that one can easily get from reading about new methods.

One problem with many reports on supposed advances in usability
engineering is that they confound the effect of the proposed
method on its own with the effect of its use as part of an experi-
ment. Often, such advances are invented by some of the world’s
leading usability experts who are highly motivated themselves
when using their own newest method, as well as being highly
motivating of the other project participants. In many cases, the
good results reported may be as much due to general skills and
abilities of these experts and the high level of excitement on the
project as to any inherent value of the proposed method or tool.

10.1 Theoretical Solutions

A Holy Grail for many usability scientists is the invention of
analytic methods that would allow designers to predict the
usability of a user interface before it has even been tested. Not only
would such a method save us from user testing, it would allow for
precise estimates of the trade-offs between different design solu-
tions without having to build them. The only thing that would be
better would be a generative theory of usability that could design

256

Future Developments

the user interface itself based on a description of the usability goals
to be achieved. The most famous analytic method is known as
GOMS (for goals, operators, methods, and selection rules) [Card et
al. 1983].

The basic GOMS method is fairly simple: It involves listing
possible user goals and subgoals (e.g., changing a word in a text
document); the operators users have available as motor, perceptual,
or cognitive primitives (e.g., click the mouse, look at the menubar,
remember a name); the methods users compose out of sequences of
these operators to achieve the goals or subgoals (e.g., selection is
done by moving the cursor to point to the word and then double-
clicking the mouse); and the selection rules necessary to decide what
to do next if the user has several goals pending or if there are
several methods that will accomplish a given goal (e.g., the word
can be removed by selecting it and issuing a cut command or by
backspacing over it). It will be apparent that a model of a user
interface of any realistic scale will be very big. Each operation and
selection rule is modeled as taking a certain amount of time to
carry out, such as the “mental operator” (e.g., to remember a name)
that is estimated at 1.35 seconds, and the analyst can then finally
calculate the time needed to perform various tasks by adding up
the time for all the individual steps.

The basic GOMS model has several weaknesses [Carroll and
Campbell 1986], the most important of which is its limitation to
error-free performance by expert users. In real life, even expert
users make large numbers of errors, and the performance of novice
and casual users is of paramount importance for most applications
of usability engineering. Modifications to the model are dealing
with some of these weaknesses [Olson and Olson 1990], but it still
cannot be said to completely account for all the phenomena of
human-computer interaction.

Several research studies have shown benefits of using GOMS to
analyze user interfaces, and there are even some practical case
studies where GOMS has been useful in the real world [Gray et al.
1992]. One study compared various ways of estimating the time
needed by users to perform database queries on telephone

257

Usability Engineering

Pop-Up Pop-Up
Menu Menu
1 Query 2 Queries

Dialog Box | Dialog Box
1 Query 2 Queries

GOMS analysis 16.6 22.6 5.8 1.2
User testing 15.4 25.5 43 6.5

Table 11 Time in seconds to look up one or two telephone numbers:
GOMS predictions versus measured results from user testing.

numbers, using either a dialog box or a pop-up menu interface
[Nielsen and Phillips 1993]. As can be seen from Table 11, the
GOMS predictions were very close to the actual times painstak-
ingly measured by having 20 test users perform hundreds of
boring tasks. The main deviation between the predictions and the
measurements is the time needed for two queries with the pop-up
menu. Use of the pop-up interface involved clicking on the tele-
phone number and selecting the database from the menu. Looking
up two telephone numbers involved doing exactly the same
sequence for both numbers, making it natural to model a two-
number query as taking twice as long as a single-number query. In
reality, the second query is much faster than the first because users
can automatically repeat a set sequence of actions without having
to put it together first. This phenomenon is known in the research
literature as one of the many suggested modifications of GOMS
[Olson and Nilsen 1987-1988], but this modification was not
known to the analysts in our study. Unfortunately, due to this need
to know a large variety of research results and modifications,
GOMS and similar approaches are still seen as intimidating by
most practitioners [Bellotti 1988] and they are not used much yet.

An alternative theoretical approach to the improvement of user
interfaces is the development of better notations for the formal
specifications of dialogues. The assumption is that better descrip-
tions of exactly what will happen in a dialogue are necessary to
gain an understanding of the dialogue and to be able to communi-
cate designs to developers, to readers of standards documents, and
to a user interface management system that might automatically
implement the design without further work on the part of the

258

Future Developments

developer. Current practice is based on very loose specifications of
user interface designs, and designers often find that their inten-
tions have not been completely realized when they see the way the
developers interpreted the design documents.

Multiple approaches to formal specification of user interfaces have
been suggested, including many based on specification techniques
for traditional software engineering extended to accommodate the
special needs of highly dynamic, interactive systems. Examples
include state-transition diagrams [Wellner 1989], BNF [Reisner
1981], Petri nets [Stotts and Furuta 1989], production systems
[Olsen 1990], logic programming [Roach and Nickson 1983], and
temporal logic [Johnson 1991]. New notations have also been
developed specifically for the specification of user interfaces, such
as the User Action Notation, UAN [Hartson et al. 1990]. In spite of
this extensive research activity, almost no user interfaces are
currently subjected to formal specification.

Some researchers claim that a task analysis based on observation
and natural language description will inherently be vague. To
allow for more precise descriptions as well as possibly deeper
insights through detailed analysis, several notations and methods
for formal task analysis techniques have been proposed [Diaper
1989a; Diaper and Johnson 1989]. Again, these techniques make
sense in principle, but seem to be too difficult for most developers
to learn and apply to practical projects. The Task—Action Grammar
(TAG) [Payne and Green 1986, 1989; Schiele and Green 1990] is a
formal modelling technique somewhat in between the interface
specification languages and the task analysis languages and is
intended to model the mapping in a system between the users’ task
and the user interface. Several case studies have found the TAG
model useful for the analysis of small user interfaces, but it does
not seem to have seen much use in practice.

259

Usability Engineering

SPOeCIRNPUTOTIPETOOL Vv ol S e Fallo Ty Jken o ¥ SR 33%
Individualized interaction. 19%
Increased use of graphics, mice, icons,etc.. 16%
Dialogues developed by the users themselves 12%
Other new I/O-mediathanspeech. 12%
Increased computer knowledge in the general population. 12%
Jask-onemediSOIUHONS:, 51/ Trsrel < o0 o s e biosjosyeie o 12%
System adapts to the user’'slevel 12%
Afew, “standard” userinterfaces. 9%
Increased awareness of usability issues. 9%
Naturallanguage. L. 7%
Al-techniques (in addition to speech and natural language). 7%
Self-explanatory systems without manuals 7%
“The past will survive,” COBOL systems still inuse, etc. 7%
Computer support for cooperativework 7%

Table 12 Fifty-seven Danish computer professionals participating in a
user interface seminar in October 1986 answered the question: “It is likely
that the situation will be different in the year 2000 concerning usability of
computer systems. Please list one or a few of the most important changes
compared with the situation today.” The table shows my classification of
the top answers (in percent of the 57 responses).

10.2 Technological Solutions

It is tempting to believe that new interaction techniques will be so
easy to use that they will solve the usability problem just by virtue
of being applied in an interface. For example, the ability to speak to
a computer is viewed by many as the way to achieve a break-
through in usability.! In 1986, I asked a group of computer profes-
sionals with interests in user interface issues to predict the major
changes in the year 2000. As shown in Table 12, the overwhelming

1. Speech input often represents future computer technology in science fiction
films—possibly because spoken dialogues are easier for the audience to
comprehend. One memorable scene in a Star Trek film had the chief engineer
subjected to time travel back to our present, where he tried to use one of the
currently popular personal computers equipped with a mouse. He promptly
picked up the mouse and used it as a microphone to give voice input to the
computer. See Mantei [1990] for amusing examples of how real users react the
first time they see a computer mouse.

260

Future Developments

“winner” was speech.? Other technologies such as flat screens and
portable computers came far down the list, being suggested by
only 4% of the respondents, even though they currently seem
much more likely to succeed by the year 2000.

Current speech technology is certainly still too unreliable to form
the foundation of future interface developments. From the perspec-
tive of this book, however, the main point is that even when perfect
speech recognition is achieved some day, there will still be a need
for usability engineering efforts to ensure the quality of the
resulting dialogues. Just consider the number of times you have
misinterpreted spoken instructions when speaking with fellow
humans.

User interface management systems,® normally referred to as
UIMS [Hartson and Hix 1989; Hix 1990; Myers 1989; Olsen 1991],
aim at reducing the time and effort needed to implement user
interfaces by introducing a separate software layer between the
user and the code handling the functionality. The UIMS will take
care of things like the drawing of dialog boxes and the tracking of
the cursor as the user moves the mouse, leaving the code that
needs to be written by the applications programmer to deal with
higher-level abstractions like “request an answer to this question
from the user.” Not only will this reduce the amount of coding
required for a graphical user interface, but it will also separate the
user interface specification from the underlying functionality so
that changes in one do not always require changes in the other.
UIMS software may be the one technology that is closest to a prac-
tical breakthrough, and indeed some user interface builders are
already in commercial use on some platforms. Potentially, user
interface builders may allow the construction of some user inter-
faces by visual formalisms that are sufficiently task-oriented to be
put together by end users without additional programming, the

2. See also Grudin [1991b, pp. 184-185] for a discussion of the history of the
belief in speech technology as an effective solution to the usability problem.

3. Other terms covering more or less the same concept are “user interface
development tools” (or “environments”), “user interface tool kits,” “user
interface builders,” and “dialogue management systems.”

261

Usability Engineering

way such end users currently construct table-based user interfaces
in a spreadsheet [Johnson ef al. 1993].

Once a user interface has been described'in a machine-readable
language in a UIMS, it may be possible to perform various auto-
matic checks of usability conformance on that specification [Bleser
and Foley 1982; Reisner 1990]. For example, it can be checked that
the syntax is the same throughout the interface. Attempts have also
been made to analyze consistency quantitatively using a GOMS-
like method [Tanaka et al. 1990] to count the proportion of words
that are different in the formal descriptions of interactions with the
two systems. This latter method seems to achieve fairly good
results, but of course it depends not only on the correctness of a
formal description of the interface but also on the correctness of a
formal description of how the user would interact with the inter-
face.

Given that user interface standards and guidelines are as hard to
apply as discussed in Chapter 8, research is also under way to auto-
matically evaluate a design’s compliance with a standard
[Lowgren and Nordqvist 1992]. Such advisory systems may
provide some assistance in checking those aspects of a user inter-
face that can easily be formally specified, but there are still many
aspects of usability that do not lend themselves to such representa-
tion and automated analysis.

Several attempts have been made at implementing expert systems
to choose the optimal interaction techniques automatically and
maybe even design the entire interface [Bleser and Sibert 1990;
Blumenthal 1990; de Baar et al. 1992; Kim and Foley 1990; Mack-
inlay 1988]. Slightly less ambitious projects aim at automatically
translating a dialogue specification from a textual form to a graph-
ical user interface, using various prespecified rules for how to
represent each dialogue technique [Vander Zanden and Myers
1990; Wiecha and Boies 1990]. This latter type of system may be
especially helpful for developers wanting to port a design across
several platforms, each having their own user interface standard
for the visual appearance of, say, radio buttons. In principle, the
user interface designer only needs to specify the rules for the trans-

262

Future Developments

lation of dialogue techniques to a given interface style once, and
future designs can then be generated automatically. There is some
hope that such rule-based style translation systems may become
practical within the near future, but the usability of the resulting
design will still depend heavily on the appropriateness of the
design specification that is fed into the rules. The more advanced
systems that aim at designing the entire interface are much less
likely to succeed except for small, well-defined domains such as
generating daily weather maps for videotex systems.

Considerable efforts are being expended on the construction of
intelligent help systems, possibly based on the peanut butter
theory of usability, which states that covering something with a
sufficiently thick layer will mask its original flavor. However, as
stated in Section 5.10, help systems do not make an otherwise
unusable system usable, since the use of the help system is an addi-
tional burden imposed on the user. Even worse, current intelligent
help systems do not seem to help the user all that much and have
not been tested under field use conditions. The premise of intelli-
gent help is sound, in that help systems could be made more
helpful if they could recognize what the user was trying to do and
provide advice based on a model of what the user already knew.
However, realistic systems to perform such a feat are many years in
the future. Also, some usability specialists argue that users prefer
systems that are not “intelligent” but just do as they are told
[Shneiderman 1993].

I am more optimistic about the possibilities for using computers
automatically to generate parts of sophisticated help interfaces that
would be tedious and time-consuming (meaning: would not be
done) if done manually, such as graphics that change according to
the point being illustrated [Feiner and McKeown 1990, 1991; Selig-
mann and Feiner 1991] or animations showing how to perform
direct manipulation interactions [Sukaviriya and Foley 1990].

263

Usability Engineering

10.3 CAUSE Tools: Computer-Aided
Usability Engineering

I hope that the discussion of CAUSE tools can be upgraded to a
chapter of its own in the next edition of this book, but for now, they
only deserve a section in the chapter on possible future develop-
ments, since they are not widely used in practice yet. CAUSE
stands for Computer-Aided USability Engineering, in the same
way that CASE stands for Computer-Aided Software Engineering.
Even though there are multiple tasks in the usability engineering
lifecycle that could be performed more efficiently with computer-
ized tools, there are almost no such tools commercially available at
the moment. Many companies have developed a small assortment
of CAUSE tools for their own, in-house use [Weiler et al. 1993], but
these tools are not widely available, and they are not as sophisti-
cated as one could have hoped for, because they have been devel-
oped on the side.

Some examples of CAUSE tools are

e Prototyping tools to rapidly construct a mock-up user interface
for user testing.

* Tools for interactive construction of screen layouts, dialog boxes,
icons, etc., by direct manipulation.

e Tools for interactive manipulation and easier use of formal nota-
tions, specifications, models, and task analysis techniques in
order to lower the barriers to their use [Johnson and Johnson
1990].

e Hypermedia representation of user interface standards and
guidelines, allowing designers to view animated examples of
interaction techniques and to jump between related issues.

* Design rationale representations.

* Wizard of Oz support tools that allow the human simulating the
advanced interface to construct replies more easily and that
constrain those replies according to the rules of the experiment.

* Logging tools for use during a user test. Such tools typically
allow an experimenter to record the time of various user actions
or events and to annotate them with a prespecified set of codes

264

Future Developments

as well as free-form comments. Often, the timestamps in the log
are coordinated with the timing codes on a videotape of the
experiment, thus allowing a playback tool to retrieve the taped
record of the test, starting a minute or so before each event that
needs to be studied in more detail 4

e Localization and translation support tools for international user
interfaces.

 Keystroke and event loggers, either for use in user testing or for
instrumentation of installed systems.

* Databases of user complaints and support line calls, as well as
analysis tools to extract more general information from the data-
base.

Many of these and other CAUSE tools exist in homemade versions
in several companies, and some even exist as commercial products,
but most of these early attempts have the problem of not being
integrated, thus not allowing for complete support of the entire
usability engineering lifecycle. Hoiem and Sullivan [1994] describe
a system developed at Microsoft that is one of the few current
examples of integrated CAUSE tools. A fully integrated CAUSE
environment could allow a design rationale to link to video clips of
user testing and to the hypertext of the usability guideline
supporting the analysis of a certain test user problem. Further-
more, the localization support system would be linked to this infor-
mation, allowing translators to avoid making the same mistake in
producing the international versions.

10.4 Technology Transfer

About 4,000 years ago, Denmark was technologically primitive
compared with southern Europe, which had started using bronze
tools. The Danes kept using stone tools for almost 1,000 years after
the first bronze tools had reached them through trade. Think about

4. It is recommended to start playback a short time interval before the event of
interest to allow the person analyzing the event to better understand the
context in which it occurred.

265

Usability Engineering

this when you complain that technology transfer is too slow in the
computer field. In the late neolithic period, stonesmiths tried to
keep up with fashion by producing flint daggers that looked (but
probably did not feel) like imported bronze daggers. In a similar
manner, character-based user interfaces were produced in the early
1990s to emulate the look of graphical user interfaces. It seems to
be a basic fact of human nature that technological innovations are
not immediately accepted by the majority of users. People prefer
letting somebody else risk their skin with unproven novelties, and
the installed base serves as a heavy stone of inertia to prevent even
proven concepts from being used right away.

Several of the methods and tools described in this chapter hold
considerable promise for improving user interfaces, even though
they will not eliminate the need for systematic usability engi-
neering efforts. Also, new methods and tools are being invented all
the time.

Unfortunately, experience has shown a considerable time lag
between the initial introductions of innovations and their broad-
scale use. The computer industry may seem to be moving fast and
changing constantly, but the computer systems experienced by the
average user are in fact fairly conservative in nature. For example,
the mouse was invented in 1964 [Engelbart 1988] and was not
introduced on a widely sold personal computer until 20 years later.
Even now, there are still many mouse-less computers in use by
users who could benefit from having a mouse.”

In general, technology transfer proceeds through a process of inno-
vation diffusion spreading from the center of innovation through a
small group of early adopters, and the majority of users do not get
the technology until much later. If N(f) is the number of users of an
innovation (such as a new usability engineering tool or method) at
time t, the first zero point of the third derivative of the function
N(t) indicates the inflection point [Mahajan et al. 1990] where so-

5. There are of course also mouse-less computers in use in situations where a
mouse would do no good. The idea is not that every innovation should neces-
sarily take over everything.

266

Future Developments

Organizations Having
Adopted the Innovation

Time after Introduction of Innovation

Figure 23 Typical Bass diffusion curve for the technology transfer of an
innovation.

called majority adopters start using the innovation and the diffu-
sion starts moving fast. See [Kain and Nielsen 1991] for an example
of the use of mathematical models of innovation diffusion from
general marketing theory to characterize the spread of hypertext
usage. In general, initial diffusion is very slow, since the curves
look something like Figure 23 [Mahajan et al. 1990]. Only after the
first inflection point of the curve do things start to move fast.
Furthermore, there is normally a number of laggards who are on
the trailing end of the curve after its second inflection point. The
last holdouts of the laggards can resist adopting new technology
for a very long time.

One way to speed up technology transfer is through the use of
change agents: people who take on explicit responsibility for trans-
ferring technology and for pushing otherwise slow-moving organi-
zations to change. In the usability engineering context, a change
agent could be a project manager who decides to use a few simple
usability methods on his or her project before corporate manage-
ment has made an official commitment to usability. Once the
results of this first, limited project are available, the change agent
can push to have more projects adopt usability methods and for the
use of more advanced usability methods.

267

Appendix A Exercises

The following exercises provide some ideas for activities you can
do to experiment with some of the methods discussed in this book.
Of course, the best exercise is really gained from using the methods
on a real development project, but maybe you would like some-
thing less daunting for a start.

The exercises are mostly intended to help readers who are using
this book for self-study. If the book is being used as a textbook for a
formal course, it will often be possible to arrange somewhat more
elaborate exercises and laboratory projects.

Exercise 1: Field Study

Go to a large railroad station like Grand Central Station and stand
next to the ticket vending machines. Observe how the machines are
being used by three categories of users: regular commuters, who
probably buy the same ticket every time, infrequent commuters,
and tourists from other cities or abroad. How could the machine be
made more efficient to use for the regular commuters? How could
the machine be made easier to use for the tourists?

Alternatively, observe the stamp vending machine at a post office.
You can also hang out by the photocopier for an hour and observe
the range of jobs people bring in and their various levels of skill in

269

Usability Engineering

operating the machine. How could the machine be made to
support common jobs better? How could its design be changed to
avoid any confusion or erroneous use you might observe, when
casual users bring in complicated jobs?

Exercise 2: Interface Design

Choose some reasonable user interface hardware and system soft-
ware as your design platform. For example, you could select a
personal computer with which you are familiar. Later, you could
try to design an interface for the same problem for a radically
different platform such as a virtual reality system, a traditional
alphanumeric mainframe terminal, or a telephone-based interface.
In any case, it is important to clarify your constraints in advance.

For the given platform, using its standard user interface “look-and-
feel,” design a user interface for the programming of a VCR to tape
a series of television shows. The interface should support imme-
diate taping from a specified channel as well as taping of future
shows, either only once or regularly every day or week. It should
be possible to program the taping of several broadcasts, and it
should be possible to cancel a scheduled taping. When designing
the user interface, please remember to include any necessary error
messages.

Modification: Assume that an online service was available to
provide program listings for the various television channels for at
least one week ahead. How would that change the interface
compared to the situation where the system cannot use any knowl-
edge of broadcasting schedules?

Exercise 3: Defining Measurable Usability Attributes

Consider the VCR user interface designed in the previous exercise.
What usability attributes would be especially important for the
success of such a product? Precisely define how you would
measure the usability of this interface, and also provide estimates
of reasonable goals for each attribute, specifying the minimally
acceptable level, the planned level, and the best possible level (see
Figure 7 on page 81).

270

Exercises

As a supplementary exercise, you can measure the usability of
your own VCR to get an idea of the current level of usability for
each of the usability attributes.!

Exercise 4: Less Is More

Choose some piece of software that you use regularly, such as a
word processor, a spreadsheet, or a drawing package. Go through
the reference manual and classify all the commands and features in
one of the following categories:

¢ Use it frequently
* Use it occasionally
¢ Almost never use it, but have used it at least once

e Have never used it

Calculate how large a percentage of the manual could have been
eliminated if the software had not included those features you
have never used or those you almost never use that you could live
without. Do you think there are other user groups that use some of
these features frequently?

Exercise 5: Iterative Design

Choose some computerized printout intended for the general
public that contains a fair amount of somewhat complex informa-
tion. Possible examples could include credit card statements, tele-
phone bills, mortgage statements, and the annual report of an
employee’s income and other tax-related information. Enter the
information from one such printout into a desktop publishing or
graphics program on your computer, using the layout from the
original statement. Define some sample questions that users could
reasonably expect to get answered from the statement, and have
one or two of your friends try to find the answers from a printout

1. The research literature can sometimes also be used as a source of bench-
marks. For example, Hoffberg [1991] found that users needed 17.1 minutes to
set the clock and program the taping of three shows when using a commer-
cially available VCR and 8.4 minutes when using her prototype interface.

271

Usability Engineering

of your computerized version of the statement. Edit your version
to compensate for the difficulties you observed your users having,
and try again with some other friends. Repeat several times!

As a supplementary exercise, once you have arrived at a “perfect”
design, try sending it to the people responsible for the original
statement and see what happens.

Exercise 6: Participatory Design

Find a few children who are old enough to know the numbers and
the clock but not old enough to read well. Design a VCR user inter-
face they could use to program the taping of their favorite televi-
sion shows. Assume that the input device will be a remote control
with a numeric keypad and a few special keys and that the output
device will be a color TV screen and some simple sound effects.
Involve the kids in the design, using plenty of white paper, felt-tip
markers, and sticky notes.

Exercise 7: Low-Fidelity Prototyping

Design an interface that would allow potential home-buyers to
view houses on the market through their television set and a fiber
optic connection to a remote video service. Users would dial into
the service, which would allow them to specify various search
criteria such as price and location, after which the system would
show video segments of the available houses and allow the
customer to set up an appointment to see a house for real.

Instead of implementing the system on a computer, design a proto-
type interface with paper, pens, and pictures cut from a newspaper
or magazine. Perform some simple testing with a few friends to see
how they would use the interface. Consider what aspects of the
design remain underspecified because you are implementing a
low-fidelity prototype, and how the differences between the full
system and your prototype impact your user tests.

272

Exercises

(82/89/93, 9AM |

@® Temperature
O Precipitation
QO visibility

O Wwind

XFr [c

Zoom Specifications

Magnification:[6] Map Center:[41N 721D

Figure 24 Screen design for a hypothetical system to provide weather
information and forecasts to travellers.

Exercise 8: Heuristic Evaluation of a Paper Mock-Up

Figure 24 shows a design for a system to provide weather informa-
tion to travelers. TRAVELweather (a non-existing system) can
provide information about the weather at 3AM, 9AM, 3PM, and
9PM for the current day as well as the two next days, using
reported readings for past weather and forecasts to predict future
weather. The interface is designed for use on a graphical personal
computer with a mouse, and will appear in a separate window on
the screen.

The user operates the interface by typing the desired time into the
box in the upper right part of the screen. If the user types a date
other than today or the next two days, or if the user types a time
other than the four times for which information is available, the
system will show an alert dialog box with the following error
message: “Weather Data Not Available.” The only button in
the error message box is an “OK” button. Clicking the OK button

273

Usability Engineering

will make the dialog box go away and will reset the date and time
specification to the previous value.

The user changes the map display by editing the boxes for zoom
magnification and for the center of the map. The system ensures
that only integer numbers can be typed in the map magnification
box by simply beeping every time the user presses a non-number
key in that box. If the user types anything in the map center box
other than a valid set of coordinates (an integer from 0 to 90
followed by the letter N or S followed by an integer from 0 to 179
followed by the letter W or E), the system will show an alert dialog
box with the following error message: “Unknown Map Coordi-
nates.” The only button in the error message box is an “OK”
button. Clicking the OK button will make the dialog box go away
and will reset the coordinates to their previous value.

With respect to all three input boxes, the user’s changes take effect
as soon as the user clicks the mouse outside a box after having
edited it.

Perform a heuristic evaluation of this interface. Remember to eval-
uate the entire interface, including both the figure and the text
describing what happens as a result of various user actions. The
result of the heuristic evaluation should be a list of the usability
problems in the interface with reference to some established
usability principle violated by that aspect of the interface. It is not
sufficient just to say that you do not like something; explain why
you do not like it with reference to the heuristics in Chapter 5 or
other usability results. Try to be as specific as possible and list each
usability problem separately. For example, if there are three things
wrong with a certain dialogue element, list all three with reference
to the various usability principles that explain why that particular
aspect of the interface element is a usability problem. There are two
main reasons to note each problem separately: First, there is a risk
of repeating some problematic aspect of the dialogue element, even
if it were to be completely replaced with a new design, unless one
is aware of all its problems. Second, it may not be possible to fix all
usability problems in an interface element or to replace it with a
new design, but it could still be possible to fix some of the problems.

274

Exercises

See the hints in Table 13 on page 278 for a list of usability problems
my colleagues and I found in this user interface. Please do not look at
the hints before you have written down your own list of usability prob-
lems. Experience shows that it is easy to believe when reading a
“solution” that you had thought of all the problems yourself, when
in fact a written list may only contain a few of them.

For another exercise in heuristic evaluation of a paper mock-up,
see [Molich and Nielsen 1990].

Exercise 9: Heuristic Evaluation of Implemented System

Analyze the stove in your kitchen. Is it perfectly clear which
controls operate what parts of the stove and how you should set
them to achieve various common tasks? If not, what established
usability principles could explain the usability problems you
found? If you happen to have a stove with uncommonly high
usability, repeat the exercise with your washing machine or your
neighbor’s stove.

Exercise 10: Heuristic Evaluation with Multiple Evaluators

As seen in Figure 16 (page 156), heuristic evaluation really requires
the use of multiple evaluators to be successful. Try to get three or
four people (including you) to perform an evaluation of a small
piece of software such as a shareware program or a utility package.
Each evaluator should inspect the user interface independently of
the other evaluators and should write down his or her list of
usability problems on paper before discussing it with the others.
After all the evaluators have concluded their evaluations, you
should meet for a discussion session to arrive at an aggregate list of
usability problems.

Exercise 11: User Testing

The most rewarding exercise in user testing is to test some software
you designed yourself. If you do so, please remember the “shut-
up” rule: You are not allowed to help the test user in any way or to
comment on the way he or she uses your system, even when the
user is making “obvious” errors. It will probably be very difficult

275

Usability Engineering

for you to keep quiet, but it is essential that you do so. If you do not
have software of your own available, a good second choice is some
shareware product (typically available from computer networks,
bulletin boards, or through user groups) that is still in its first
release and thus has not yet been polished by user feedback.

For the given software, define one or two typical tasks that one can
do with the software. Then get one or two test users who have not
used the software before (you will get even more spectacular
results if you pick test users who have not used any computer
systems before) and ask them to perform the given task. If neces-
sary, you can give the users general instructions about how to use
the keyboard, the mouse, and such, but do not help them use the
actual software that is being tested.

Exercise 12: Individual Differences

The next few times you go to the supermarket, measure the time
the check-out clerk spends on ringing up your purchases. Divide
by the number of items you bought, and you have that person’s
transaction time. What is the ratio between the fastest and slowest
clerks? Compare with the numbers given in [Egan 1988] where a
performance range of 2:1 is mentioned as typical for most noncom-
puter tasks.

Exercise 13: International User Interfaces

Figure 25 shows an example interface that was subjected to an
admittedly poor translation into English. Try to guess the original
meaning of the interface without looking at the hints. Would you
buy a system with an interface translated like that?

Hints

Some hints are given for Exercises 8 and 13. Please do not look at
the hints before you have worked out the exercise yourself. Once
you know the information contained in the hints, it is impossible to
erase your mind and go back and look at the interfaces with a fresh
perspective.

276

Exercises

(European Joint Ownership Information 5\,rs1|arnj

% % % Misfire an oplfon from lhe sel dinner:
% A Estate {38L)
4 % Industry (81)
%o X Yarn (3H)

| »? Studio eventualities (%S)

Italy:
One of the original six fellow states.
The Rum Treaty was named after its
capitol.

7

Figure 25 Sample interface originally developed in Danish and then
translated into English by the use of a dictionary. Some hints are given
below (please do not look before you have tried working on the exercise
yourself).

The hints below list some of the terms in the figure together with the original
Danish terms and more appropriate English translations.

lexdeQ aq pjnoys |onde)

awoy = woy = wny

JaqUIBIN = WIIPaI\ = MOJ|94

sanunpoddo [euoneanp3 = Jepaybiinwaipnig = Sall[ENJUdAS OIpnIS
ainynouby = Bnugpue = sjels3

K10}SIH = BUOISIH = UIBA

NUBJ\ = NUSI\ = Jauulp 188

IO = MIIM = SIiSIN

Aunwwo) = geyssa|jee4 = diysisumQ uiop

277

84C

The following is a list of the 31 usability problems found in the
TRAVELweather interface when it was subjected to heuristic evalu-
ation by four usability specialists. The comment in parentheses
after each problem description refers to the heuristics in Chapter 5.

While I designed this interface, I noticed about ten usability prob-
lems which I deliberately left in so that there would be something
for the readers to discover in the exercise. Later, when I evaluated
the interface systematically myself, I was surprised to find as many
as 20 usability problems, and a further 11 problems were found by
three other evaluators. This only goes to show that usability is
harder to achieve than even a usability specialist may think at first.
* The name of the system is displayed much too prominently. By making the

name smaller, room could be provided for alternative dialogue elements, or
the screen could be made less busy. (Simple and Natural Dialogue)

The map should display the names of at least some larger cities and other
locations of interest to allow users to better recognize these locations. One
way of including additional names without cluttering up the map would be
to pop up the names of cities close to the weather stations when the user
slides the mouse over a weather reading. (Feedback)

.

Even though weather does not respect political boundaries, it is hard to read
a map without the display of state and country borders. The map shows the
northeastern United States from New England over New York and New
Jersey to Delaware (as well as a part of Canada). It would be even harder to
read the map if the ocean and lakes had not been set off in a different
pattern. (Speak the users’ language)

The pattern used to denote oceans and lakes does not make it sufficiently
clear what parts of the map are land and what are water. Instead of the
current pattern, use a wavy pattern (or blue on a color screen). (Feedback)

Since Long Island is an island, it should be drawn as such and not as a
peninsula (the long arm jutting out to the right at the 28° temperature), even
if the resolution of the vector graphics map database makes it difficult to do
so. Exaggeration may be needed in this case to match the way the users
think about geography. (Speak the users’ language)

* The user has no way of knowing that the box with a date and time can be
edited since there is no label, prompt, or help text. (This issue is a mix of a
feedback problem and a help and documentation problem)

g astosaxq 4of sjulE €1 dqeL

Buusauibuz Aungesn

64T

The day/month/year date format may be misinterpreted by foreign tour-
ists. One way of avoiding this problem is to represent months by their name
instead of their number. (Prevent errors)

The zeros in the date have slashes which is a computer-oriented way of
writing zeros. Use a typeface with regular Os. (Speak the users’ language)

The error message “Whether data not available” is not precise. Instead, the
system should repeat the date and time as entered by the user and explain
why they were not acceptable to the system. Different error messages should
be used for dates and times that are not formatted correctly, dates and times
that are before or after the time interval for which weather information is
available, and times that are not one of the four hours for which information
is available. (Good error messages)

The error message “Weather data not available” is not constructive. The
error message ought to inform the users about how to correct their input to
make it acceptable to the system. For example, if the user’s error was to
specify 10AM as the time, the system could say that “Weather information is
only available for 3AM, 9AM, 3PM, and 9PM.” (Good error messages)

Users should not be punished for making errors by having the system delete
all their input. Instead, the erroneous user input should be retained to allow
the user to edit it. Alternatively, to keep the fields on the main screen correct,
repeat the erroneous input in the error dialog box and allow users to edit it
there. (Good error messages/ polite error handling)

Having users enter a complete date and time specification is error prone,
especially as only twelve times are acceptable to the system. Alternatively,
the system could provide a pop-up menu with the twelve times. This rede-
sign would also make it possible to simplify the reference to the current day
and the next day by calling them “Today” and “Tomorrow.” (Prevent errors)

The term “Precipitation” may be hard to understand for foreign tourists
(who are apparently envisioned as users, as can be seen from the nice feature
of displaying temperatures in Fahrenheit or Celsius). Instead, consider using
a label with simpler words like Rain/Snow. International usability might
also be enhanced by adding icons like a thermometer for temperature and
raindrops for precipitation. (Speak the users’ language)

Displays of temperatures in Fahrenheit and in Celsius are mutually exclu-
sive, with exactly one of the two being active at any one time. Therefore, the
choice of temperature scale should be made with radio buttons and not with
checkboxes (which are used for options that are not mutually exclusive).
(Consistency {with GUI standard})

“(panuijuod) § as124axq 4of sjulf| €1 d[qeL

sesiolaxy

08¢

The F/C selection is not an additional feature of the same nature as the
Temperature/Precipitation/ Visibility /Wind selection. Instead, the choice of
temperature scale should be grouped with the selection of Temperature as
the type of weather information displayed in the map. It can also be recom-
mended to gray out the temperature scale selection when a non-temperature
type of weather information is chosen. (Simple and natural dialogue)

It may be easier for advanced users to understand weather patterns if they
can see several types of weather data simultaneously. Thus, the displays of
the four kinds of weather data should not be mutually exclusive (as indi-
cated by the use of radio buttons) but should be toggle switches (check
boxes), several of which can be on at any given time. To make the interface
approachable for novice users, the default display should still only display a
single kind of weather data. (Simple and natural dialogue)

It is possible to enter a zoom magnification of zero, even though that value
will lead to an undefined result. Also, users might enter extremely large
magnification values, resulting in an unreadable map. The system should
have a constructive error message for unreasonable magnification values.
(Feedback)

Beeping is a poor error message for the magnification box. It is probably
acceptable as long as the user only types a few characters, but in case of
repeated typing, a precise and constructive error message should be given,
saying that only numbers can be entered as magnification factors. (Good
error messages)

Most people will not feel comfortable entering map locations as degrees
longitude and latitude. Alternatively, it could be possible to allow users to
specify the map center by clicking on the map or by searching for a city
name or an airport code. If a search feature is included, it should be tolerant
of spelling errors. (Speak the users’ language)

It is not clear from the specification to what extent the system will be used
repeatedly by the same users (home or office use) or whether it will be used
mainly by a flow of changing users (airport etc. use). If the same users can be
expected to repeatedly use the system, they will probably also repeatedly
ask for weather for the same areas. Support for this user need can be
provided by having the system remember the last seven or so locations
typed in the map center box and provide direct access to them through a
pop-up menu. The next time the system was started, the map could also
come up with the zoom specifications (magnification and center) set to the
values from the last time the same user used the system. (Shortcuts)

“(panu1ju00) g as1oiaxy 40f sjutl] €Y d[qeL

Bupsauibuz Aupiqesn

18¢

The error message “Unknown map coordinates” is not precise. The error
message should repeat the user’s input and give different error messages,
depending on whether the user has entered incorrectly formatted coordi-
nates or coordinates that are out of bounds. (Good error messages).

The system should be more forgiving in its acceptance of longitudes. For
example, 190E should be interpreted as 170W. (Prevent errors)

The system should be more forgiving in its acceptance of latitudes. For
example, 0° (the Equator) should not need a letter to specify northern or
southern hemisphere. Similarly, latitudes 90N (the North Pole) and 90S (the
South Pole) should not need specifications of a longitude. (Prevent errors)

The system should display degree marks as part of its default entry in the
map center box. In the example, the box could be populated with the text
41°N 72°W. The system should still accept user input without the degree
marks, but the user’s initial interpretation of the box will be easier if degree
marks were used. (Speak the users’ language)

The way magnification factors is represented is obscure. What does it mean
that the map has been magnified six times? Is a magnification of seven more
or less detailed than a magnification of six? A slider or a pair of zoom-in/
zoom-out buttons might be easier to understand. (Simple and natural
dialogue)

The way the user navigates about the map is awkward. There are two navi-
gational dimensions (north-south, east-west) that have been combined in a
single text box, and a third (zoom in—out) that has been grouped with the
other two even though it is different in nature. Alternatively, the map could
have scroll bars to allow the user to move in the two geographical dimen-
sions, and a zoom slider for zooming. (Simple and natural dialogue)

Since a common user action will probably be to center the map around a
desired location and zoom in on that location, a shortcut could be provided
to combine both these actions when the user clicks on the map. (Shortcuts)

Requiring the user to click outside the entry box before changes will take
effect is error prone. It is likely that many users will forget this and will
wonder why nothing happens after they changed the text. One possible way
to reduce the likelihood of this error is to have an explicit “do it” button.
Also, the user’s changes should take effect if the user hits the enter or
return keys. Redesigning the interface as suggested above to replace the
text entry boxes with a combination of pop-up menus, scroll bars, zoom
buttons, and a click shortcut would also solve the problem. (Prevent errors)

It is not apparent from the screen how one quits the TRAVELweather system.
For example, add a close box or a quit button. (Clearly marked exits)

“(panu1ju02) § as1olaxy 4of Sjulf] €1 d[qeL

sasiolexy

8¢

The system has no help feature. Hopefully, the interface will be redesigned
so that most users can use it without help, but the system probably still has
sufficient complexity to warrant a help screen. For example, the help screen
could explain how the visibility data can be interpreted. (Help and docu-
mentation)

Since one likely application of the system is to find the weather for a specific
city over a period of time, consider adding a feature to get a full weather
forecast for a given city in a single display rather than requiring the user to
select multiple times and multiple data types. This display would probably
have to be a separate window with a combination of a temperature and
precipitation table and a written description of the expected weather condi-
tions. (Shortcuts)

‘(panu1juoo) § as104axq 40f sjulf] €1 dqeL

Buueauibug Aujigesn

Appendix B BibllOgT aphy

The user interface field is very diverse, both in the kinds of work
being done and in the background of its people. This is true both
on the research—practice dimension and with respect to the disci-
plines involved, which certainly include computer science,
psychology, human factors, anthropology, graphics design, and
management, as well as several other fields. This diversity is
reflected in the literature of the field, which is scattered over many
different publications and societies. If you want to limit yourself to
reading a single publication, I would definitely recommend the
annual proceedings of the CHI conferences, but because of the
broad nature of the field, such a limitation is not really advisable.

The main professional society in the user interface field is the Asso-
ciation for Computing Machinery’s Special Interest Group on
Computer-Human Interaction (ACM SIGCHI). For membership
information, contact ACM, 1515 Broadway, New York, NY 10036,
USA, or send email to acmhelp@acm.org. The membership bene-
fits include the proceedings of the annual CHI conference (if you
choose the so-called C HI-Plus membership option) and a subscrip-
tion to the SIGCHI Bulletin newsletter.

This bibliography first lists some basic sources of information,
including conferences, journals, books, and videotapes, and then
gives bibliographic references to the works cited in this book.

283

mailto:acmhelp@acm.arg.

Usability Engineering

B.1 Conference Proceedings

Because of the rapid developments in the field of user interfaces,
many of the most important research results are reported in confer-
ence proceedings rather than in books or journals. The most impor-
tant conferences in the field are the following:

* Association for Computing Machinery (ACM) Special Interest
Group on Computer-Human Interaction (SIGCHI) CHI Confer-
ences on Human Factors in Computing Systems: Boston 1983,
San Francisco 1985, Boston 1986, Toronto 1987, Washington, DC
1988, Austin 1989, Seattle 1990, New Orleans 1991, Monterey
1992, Amsterdam, The Netherlands 1993, Boston 1994, Denver
1995, Vancouver 1996. Proceedings published by the ACM itself
as special issues of the SIGCHI Bulletin until 1993 and as part of a
special SIGCHI-Plus package from 1994. Furthermore, the
proceedings from recent years have been copublished by
Addison-Wesley and proceedings from early years were copub-
lished by North-Holland. The SIGCHI Bulletin 17:3 (January
1986) contained a combined keyword-in-context index to the
proceedings of CHI'83 and '85 together w1th two “pre-CHI”
conferences (Ann Arbor 1981 and Galthersburg 1982).

e Usability Professionals” Association’s annual meeting: WordPer-
fect 1992, Microsoft 1993, Silicon Valley 1994. The proceedings
from these meetings have so far not been published.

* International Federation for Information Processing (IFIP)
INTERACT Conferences: London, UK. 1984, Stuttgart, German}zr
1987, Cambridge, U.K. 1990, Amsterdam, The Netherlands 1993,
Lillehammer, Norway 1995. Proceedings published by North-
Holland.

* British Computer Society (BCS) Human-Computer Interaction
(HCI) Conferences: East Anglia 1985 York 1986, Exeter 1987,
Manchester 1988, Nottingham 1989,% Edinburgh 1991, York 1992,

1. Many people consider the 1982 Gaithersburg conference the birth of the
user interface field as an organized discipline. It was not an “official” CHI
conference, but it focused on user interface issues and brought together many
of the pioneers in the field.

2. The 1993 INTERACT conference was replaced by the 1993 CHI conference
in Amsterdam under the shared name “INTERCHI"93.”

284

Bibliography

Loughborough 1993, Glasgow 1994, Surrey 1995, Liverpool 1996.
Proceedings published by Cambridge University Press under the
title People and Computers.

e HClI-International Conferences:* Hawaii 1987, Boston 1989, Stutt-
gart 1991, Orlando 1993, Tokyo 1995. Proceedings published by
Elsevier Science Publishers.

¢ European Conferences on Cognitive Ergonomics (ECCE), orga-
nized by the European Association for Cognitive Ergonomics:
Amsterdam 1982, Gmunden 1984, Paris 1986, Cambridge 1988,
Urbino 1990, Hungary 1992. Proceedings from most of these
conferences have been published by Academic Press.

Furthermore, the annual meetings of the Human Factors and Ergo-
nomics Society have included special sessions on human-
computer interaction for several years in addition to sessions on
traditional human factors issues, and the ACM SIGGRAPH confer-
ences and workshops also cover user interface issues to some
extent. The ACM SIGDOC conferences cover issues in writing
documentation, including online documentation. Recent confer-
ences have included several papers on usability testing of manuals.

Major conferences in languages other than English include the
German Software Ergonomie (organized by the German chapter of
the ACM in cooperation with the Gesellschaft fiir Informatik), the
Japanese Human Interface Symposium (organized by the Committee
for Human Interface of the Japan Society of Instrument and
Control Engineers), and the Swedish STIMDI (organized by the
Interdisciplinary Interest Association for Human—Computer Inter-
action).

3. The HCI'90 conference was replaced by the IFIP INTERACT'90 conference
in Cambridge, U.K.

4. Please do not confuse the HCI'Intl. conference series with the HCI confer-
ence series sponsored by the British Computer Society. These conferences have
different sponsors and styles. The user interface field has many different
conferences, many of which include the three words “computer,” “human,”
and “interaction” in various permutations. As a further example, the Austra-
lian annual conference is called OZCHI and is sponsored by the CHISIG group
of the Ergonomics Society of Australia.

285

Usability Engineering

In addition to these conferences on general user interface issues,
there are several important conferences on more specialized issues.
Again, these conferences are often the most important sources of
information on developments in their respective subfields. The
most important specialized conferences are as follows:

* ACM CSCW Conferences (Computer-Supported Cooperative
Work): Austin 1986, Portland 1988, Los Angeles 1990, Toronto
1992, Chapel Hill 1994. This conference is held in even years,
alternating with the European Conference on Computer-
Supported Cooperative Work (ECSCW) in odd years (Gatwick
1989, Amsterdam 1991, Milano 1993).

e ACM Hypertext Conferences: Chapel Hill 1987, Pittsburgh 1989,
Versailles (Paris) 1990, San Antonio 1991, Milano 1992, Seattle
1993, Edinburgh 1994. This conference is held in North America
in odd years, and in Europe under the name European Confer-
ence on Hypertext (ECHT) in even years.

¢ ACM Symposium on User Interface Software and Technology:
UIST (implementation issues, User Interface Management
Systems, and such): Banff 1988, Williamsburg 1989, Snowbird
1990, Hilton Head 1991, Monterey 1992, Atlanta 1993.

Other events of interest include the workshops on Empirical Studies
of Programmers, the Human Factors and Ergonomics Society’s Inter-
face conferences on consumer product design, the ACM Interna-
tional Workshop on Intelligent User Interfaces, the Computer
Professionals for Social Responsibility’s Participatory Design Confer-
ence (PDC), the IEEE Visualization conferences, and the Work With
Display Units (WWDU) conferences on hardware ergonomics. Most
of these meetings are held annually or biennially and are
announced in the ACM SIGCHI Bulletin.

B.2 Journals

The most important journals in the field of human-computer inter-
action are the following;:

®* ACM Transactions on Computer-Human Interaction (TOCHI),
published by the Association for Computing Machinery. This

286

Bibliography

journal will probably be dominated by long in-depth papers
reporting on major projects. Also, the computer science aspects
of user interfaces may get more coverage than psychological and
practical aspects.

» Behaviour & Information Technology (ISSN 0144-929X), published
by Taylor & Francis. This journal is a good source for reports on
empirical studies of various aspects of user interfaces. Issue 1&2
in 1994 was a special double issue on usability laboratories,
providing detailed coverage of a range of laboratories and prac-
tical usability methods.

* Human—Computer Interaction (ISSN 0737-0024), published by
Lawrence Erlbaum Associates. This journal is dominated by
long, somewhat academic papers with a bias in favor of psycho-
logical studies.

e Interacting with Computers (ISSN 0953-5438), published by Butter-
worth-Heinemann in cooperation with the British Computer
Society’s specialist group on Human-Computer Interaction. This
journal tends to have a fair number of conceptual papers and
discussion pieces.

e International Journal of Human—Computer Interaction (ISSN 1044-
7318), published by Ablex. This journal tends to have a broad
perspective, with coverage of issues like occupational stress and
organizational factors related to the use of computers.

e International Journal of Human—Computer Studies (ISSN 1071-5819),
published by Academic Press. This journal is the oldest in the
field (founded 1969) and was called International Journal of Man—
Machine Studies (ISSN 1070-5819) until 1993. It publishes a mix of
conceptual dialogue-analyses and empirical studies.

Furthermore, since 1994, the ACM has published a magazine spon-
sored by SIGCHI called interactions (ISSN 1072-5520). This publica-
tion seems to be the most important publication for practicing user
interface designers and developers in industry.

The Human Factors and Ergonomics Society’s Human Factors
journal (ISSN 0018-7208) contains some papers on computer—
human interaction in addition to papers on other types of human
factors and is especially valuable for hardware ergonomics issues.
The Human Factors and Ergonomics Society also publishes a

287

Usability Engineering

magazine called Ergonomics in Design: The Magazine of Human
Factors Applications (ISSN 1064-8046). This magazine includes
coverage of industry-specific design issues for industries like aero-
space, insurance, automobiles, medicine, and energy, as well as
articles about broader applications. The Information Design Journal
(ISSN 0142-5471) often has articles relevant to the design of screens,
printouts, and documentation.

The Association for Computing Machinery’s Special Interest Group
on Computer-Human Interaction (ACM SIGCHI) publishes a
quarterly magazine, SIGCHI Bulletin, which is an important source
of information about current events in the field as it has a much
shorter production cycle than the journals mentioned above. In
fact, the SIGCHI Bulletin is probably the one publication to read on
a regular basis for conference announcements and trip reports,
updates on the standards committees, book reviews, and similar
news. Furthermore, the Usability Professionals’ Association (see
page 165) publishes a newsletter called Common Ground four times
per year with coverage of usability testing issues.

Finally, many other journals and magazines publish papers on
aspects of user interface design, including:

* ACM SIGGRAPH Computer Graphics (User Interface Manage-
ment Systems). Special issues: January 1983, April 1987.

* ACM Transactions on Graphics (graphical interfaces and interac-
tion techniques). Special issues: April, July, and October 1986.

* ACM Transactions on Information Systems (interfaces for business
professionals, cooperative work, etc.). This journal was previ-
ously called ACM Transactions on Office Information Systems but
changed its name in 1989. Special issues: April 1987, October
1987, October 1988, January 1989, April 1991, October 1992, July
1993, October 1993.

* BYTE (good coverage of new user interfaces as they are imple-
mented on personal computers). Special issues: April 1982,
December 1983, July 1990, April 1992.

* Communications of the ACM (general articles as well as articles on
software psychology and the human factors of the programming
process). Special issues: April 1983, July 1986, November 1988,

288

Bibliography

December 1991, May 1992 (users with disabilities), April 1993
(next-generation wuser interfaces), June 1993 (participatory
design), July 1993 (augmented reality).

* Computer Supported Cooperative Work.

* Hypermedia (user interfaces to hypertext and hypermedia
systems).

* [EEE Computer Graphics and Applications (graphical interfaces).
Special issues: November and December 1986. Also, July 1991
was a special issue on multimedia interfaces.

* |[EEE Software (User Interface Management Systems and other
software tools for user interfaces). Special issue: January 1989.
Also, IEEE Software has a regular user interface column with two-
page articles on “tools, techniques, and concepts to optimize user
interfaces.” These articles are often a very good source of infor-
mation about practical usability methods.

e IEEE Transactions on Professional Communication (writing docu-
mentation). Special issues: December 1986, December 1989.

* PRESENCE, the Journal on Teleoperators and Virtual Environments
(virtual reality).

e User Modeling and User-Adapted Interaction.

The graphics journals have reduced their emphasis on user inter-
face issues in recent years as more dedicated user interface publica-
tions have appeared.

Finally, a kind of “online magazine” is provided by the discussions
on the Internet newsgroup comp.human-factors. As with many
other netnews groups, comp.human-factors has a lower signal-

to-noise ration than edited publications. Some postings are regular
“flame wars” between adherents of different user interface styles,
but there are also many interesting announcements posted, and the
newsgroup also provides an efficient way of quickly communi-
cating with a large number of people who are working on user
interface issues. For example, I posted a single message asking for
volunteers to review the manuscript of this book and received 62
replies within a few days. Other newsgroups of interest include
bit.software.international (international use), sci.vir-

289

Usability Engineering

tual-worlds (virtual reality), and alt.hypertext as well as
groups for many GUI programming tools.

B.3 Introductions and Textbooks

Booth, P. (1989). An Introduction to Human—Computer Interaction.
Lawrence Erlbaum Associates, Hove, U.K. ISBN 0-86377-123-8.

Provides good coverage of many usability issues while possibly remaining a
little bit too abstract for some readers. This book is especially strong on inter-
face theory and includes good annotated lists of references to the research
literature. It has some coverage of the design process but very little material on
user testing. See the review in the International Journal of Human—-Computer
Interaction 3,1 (1991), 113-114.

Heckel, P. (1991). The Elements of Friendly Software Design, 2nd
edition. Sybex, San Francisco. ISBN 0-89588-768-1.

Extensive treatment of interfaces as a communication medium with many
parallels and lessons from other media such as film, theater, architecture,
painting, etc. Concentrates on the qualities of the end product and has very
little coverage of the design process and test methods.

Hix, D., and Hartson, H.R. (1993). Developing User Interfaces:
Ensuring Usability Through Product & Process. Wiley, New York, NY.
ISBN 0-471-57813-4.

Good coverage of many aspects of the usability engineering lifecycle, with
special emphasis on how to specify user interfaces (including the authors’
“UAN" user action notation language). See the review in the International
Journal of Man—Machine Studies 39, 6 (December 1993), 1052-1053.

Lindgaard, G. (1994). Usability Testing and System Evaluation: A
Guide for Designing Useful Computer Systems. Chapman & Hall,
London, U.K. ISBN 0-412-46100-5.

Basic textbook on user testing with extensive coverage of “classic” issues in
experiment design. The book also covers additional methods and has a good
chapter on interviews and surveys. Each chapter includes an extensive list of
questions for the student as well as exercises (with solutions to both provided
in the back of the book).

290

Bibliography

Mayhew, D. J. (1992). Principles and Guidelines in Software User Inter-
face Design. Prentice Hall, Englewood Cliffs, NJ. ISBN 0-13-721929-
6.

More of a collection of interface advice than a textbook in the traditional sense,
but still good to learn from. Good, extensive collection of guidelines for the
design of various dialogue types, including menus, form fill-in, question-
answer, command languages, function keys, and direct manipulation. Only a
single chapter on the design process and almost nothing on test methods. See
the review in the ACM SIGCHI Bulletin 25, 2 (April 1993), 51-53.

Rubinstein, R., and Hersh, H. (1984). The Human Factor: Designing
Computer Systems for People. Digital Press, Burlington, MA. ISBN 0-
932376-44-4.

A nice introduction to the field with many good guidelines. Fair coverage of
user testing. See the review in Datamation (1 May 1985), 161-162.

Shneiderman, B. (1992). Designing the User Interface: Strategies for
Effective Human—Computer Interaction, 2nd edition. Addison-Wesley,
Reading, MA. ISBN 0-201-57286-9.

One of the most popular textbooks for this topic. Includes extensive surveys of
the user interface literature with special emphasis on presenting empirical
results. The book is especially strong on dialogue techniques and screen
design but has comparatively little coverage of the user test methods needed
to generate empirical results or to test new interfaces. See my review of the
first edition in the ACM SIGCHI Bulletin 18, 3 (January 1987), 85-86. The
second edition has been brought up to date and is a considerable improve-
ment over the first. See the review of the second edition in the Human Factors
Society Computer Systems Technical Group Bulletin 19, 2 (December 1992), 11.

B.4 Handbook

Helander, M. (Ed.) (1988). Handbook of Human—Computer Interaction.
Elsevier Science Publishers, Amsterdam, The Netherlands. ISBN 0-
444-70536-8 (hardcover), 0-444-88673-7 (softcover).

Unfortunately, this book is very expensive, but it does contain a thorough
coverage of the field on 1168 pages with many chapters written by some of the
best-known specialists in the various subfields. See my review in the ACM
SIGCHI Bulletin 21, 3 (January 1990), 107-108. A softcover edition published in
1990 is considerably cheaper but still expensive.

291

Usability Engineering

B.5 Reprint Collections

Many of the most important papers in human—computer interac-
tion may be hard to find, but the following reprint collections offer
a good place to start:

Baecker, R. S. (Ed.) (1992). Readings in Groupware and Computer-
Supported Cooperative Work: Assisting Human—Human Collaboration.
Morgan Kaufmann Publishers, Los Altos, CA. ISBN 1-55860-241-0.

Extensive set of research papers in the CSCW area.

Baecker, R., and Buxton, W. A. S. (Eds.) (1987). Readings in Human—
Computer Interaction: A Multidisciplinary Approach. Morgan Kauf-
mann Publishers, Los Altos, CA. ISBN 0-934613-24-9. (First
edition.)

Baecker, R. M., Grudin, J., Buxton, W., and Greenberg, S. (Eds.)
(1994). Readings in Human—Computer Interaction: Toward The Year
2000. Morgan Kaufmann Publishers, San Francisco, CA. ISBN 1-
55860-246-1. (Second edition.)

A collection of many of the most important papers in the field supplemented
with extensive and insightful comments and overviews. This collection could
actually serve well as a textbook or an introduction to the field, provided the
reader has some experience in independent study. The first edition was espe-
cially notable for containing many of the classic papers in the field that are
otherwise hard to get hold of, and in a very unusual turn of the publishing
business, the publisher has decided to keep the first edition in print in parallel
with the second edition. See the review of the first edition in the ACM SIGCHI
Bulletin 21, 1 (July 1989), 118-119.

Curtis, B. (Ed.) (1985). Tutorial: Human Factors in Software Develop-
ment, 2nd edition. IEEE Computer Society Press, Los Alamitos, CA.
ISBN 0-8186-0577-4.

A collection of papers addressing the important special case where computer
programmers are considered as being users of programming systems.

Greif, I. (Ed.) (1988). Computer-Supported Cooperative Work: A Book of
Readings. Morgan Kaufmann Publishers, Los Altos, CA. ISBN 0-
934613-57-5.

Bibliography

The most important pioneering papers in the “groupware” field of several
users interacting using several computers. See the review in the ACM SIGCHI
Bulletin 21, 2 (October 1989), 125-128.

Marca, D., and Bock, G. (Eds.) (1992). Groupware: Software for
Computer-Supported Cooperative Work. IEEE Computer Society Press,
Los Alamitos, CA. ISBN 0-8186-2637-2.

A collection of CSCW papers with a slightly more technological emphasis than
the others.

Preece, J., and Keller, L. (Eds.) (1990). Human—Computer Interaction.
Prentice Hall, Hertfordshire, U.K. ISBN 0-13-444910-X.

A collection of papers from an Open University course that contains more
European papers than the other collections. This set of readings reprints many
of the most important classics in the field in a well-designed package (all the
papers have been re-typeset with a consistent typography). It is probably the
most accessible of the current reprint collections.

Sage, A. P. (Ed.) (1987). System Design for Human Interaction. IEEE
Press, New York, NY. ISBN 0-87942-218-1.

These papers are mostly taken from the field of control room design and
process control and have a slightly different flavor than the human—-computer
interaction mainstream literature.

Venturino, M. (Ed.) (1990). Selected Readings in Human Factors. The
Human Factors and Ergonomics Society, Santa Monica, CA. ISBN
0-945289-00-6.

This book mostly contains traditional human factors papers, and therefore has
fairly little overlap with the other collections listed here. The papers reprinted
here have titles like “Review and analysis of color coding research for visual
displays,” “Properties of workload assessment techniques,” and “Information
capacity of discrete motor responses.” See the review in the Human Factors
Society Bulletin 34, 7 (July 1991), 13.

293

Usability Engineering

B.6 Important Monographs and
Collections of Original Papers

These are books I have read and enjoyed myself. In fact, there are
several other good books on user interface issues, and more are
being published every year as the field grows in importance. See
the annual British HCI BookViews survey (discussed on page 304)
for ratings of a wider selection of books.

Advances in Human—Computer Interaction. Ablex Publishing Corp.,
Norwood, NJ. Published annually. Vols. 1-4 edited by H. R.
Hartson and D. Hix. Edited by]. Nielsen since Vol. 5.

The Advances is a kind of yearbook of the user interface field with review arti-
cles that summarize recent developments in selected areas. Not all areas are

covered every year, but a collection of a few volumes provides broad coverage
of where the field is going.

Bias, R. G., and Mayhew, D. J. (Eds.) (1994). Cost-Justifying Usability.
Academic Press, Boston, MA. ISBN 0-12-095810-4.

A book discussing the business case for usability work, including coverage of
different kinds of companies (vendors, internal development, contractors),
case studies, and difficult matters such as accounting for intangible benefits.

Bolt, R. A. (1984). The Human Interface: Where People and Computers
Meet. Lifetime Learning Publications and Van Nostrand Reinhold,
New York, NY. ISBN 0-534-03380-6.

A description of much of the work at the MIT Media Lab on developing totally
new possibilities for user interfaces, including wall-sized displays and using
eyetracking as an input-medium.

Brand, S. (1987). The Media Lab: Inventing the Future at MIT. Viking
Penguin, New York, NY. ISBN 0-670-81442-3.

A popular survey of research at the MIT Media Lab. Includes otherwise hard-
to-find coverage of the NewsPeek personalized newspaper project, the Vivarium

project, and several other projects in advanced interfaces for education and
communication. See the review in AI Magazine Spring 1990, 99-100.

Card, S. K., Moran, T. P, and Newell, A. (1983). The Psychology of
Human—Computer Interaction. Lawrence Erlbaum Associates, Hills-
dale, NJ. ISBN 0-89859-243-7.

294

Bibliography

Probably the most famous and most cited book in the field. Introduced the
GOMS (goals, operators, methods, and selection rules) analytical model of
computer users. See the reviews in Contemporary Psychology 29, 2 (1984), 119—
120 and the ACM SIGCHI Bulletin 15, 4 (April 1984), 26.

Carroll, J. M. (Ed.) (1987). Interfacing Thought: Cognitive Aspects of
Human—Computer Interaction. The MIT Press, Cambridge, MA.
ISBN 0-262-03125-6.

Many good papers on the cognitive issues that form the underlying science
basis for much of HCI. See the review in the ACM SIGCHI Bulletin 20, 2
(October 1988), 88-91.

Carroll, J. M. (1990). The Nurnberg Funnel: Designing Minimalist
Instruction for Practical Computer Skill. The MIT Press, Cambridge,
MA. ISBN 0-262-03163-9.

The minimalist approach to the design of documentation. See the review in
IEEE Transactions on Professional Communication 33, 4 (December 1990), 182—
187, and the author’s reply in IEEE Transactions on Professional Communication
34, 1 (March 1991), 58. The ACM SIGDOC Asterisk Journal of Computer Docu-
mentation 16, 1 (January 1992) was a special issue devoted to commentaries on
this book.

Carroll, J. M. (Ed.) (1991). Designing Interaction: Psychology at the
Human—Computer Interface. ~ Cambridge University Press,
Cambridge, U.K. ISBN 0-521-40056-2 (hardcover), 0-521-40921-7
(softcover).

Many papers on the theory of design practice (based on the 1989 Kittle House
Inn workshop), including coverage of the artifact theory championed by
Carroll, viewing concrete interface designs as the principal embodiments of
usability theory. See the review in the International Journal of Man—Machine
Studies 37, 6 (December 1992), 812-821.

Duffy, T.M., Mehlenacher, B., and Palmer, J.E. (1992). Online Help:
Design and Evaluation. Ablex, Norwood, NJ. ISBN 0-89391-848-2.

Reviews design principles for online help and provides an evaluation form
with eight categories to be used in assessing the usability of a help system.
Data is given from evaluations of 28 commercially available help systems.

Dumas, J. S., and Redish, J. C. (1993). A Practical Guide to Usability
Testing. Ablex, Norwood, NJ. ISBN 0-89391-990-X (cloth), 0-89391-
991-8 (paper).

295

Usability Engineering

Detailed advice on user testing from people who have experience from a large
number of different studies. The book includes sample questionnaires and test
forms. One weakness of this book is its emphasis on “deluxe usability engi-
neering” methods requiring a usability laboratory and several collaborating
usability specialists. See the review in the Usabilty Professionals Association’s
Common Ground newsletter 3, 2 (June 1993), 5.

Grandjean, E. (1987). Ergonomics in Computerized Offices. Taylor &
Francis, London, U.K. ISBN 0-85066-350-4.

Abook on traditional hardware ergonomics (furniture, lighting, etc.) by one of
the best-known scientists in the field.

Hopgood, F. R. A., Duce, D. A,, Fielding, E. V. C., Robinson, K., and
Williams, A. S. (Eds.) (1986). Methodology of Window Management.
Springer-Verlag, Berlin, Germany. ISBN 3-540-16116-3.

A collection of papers discussing user interface and implementation issues of
windows as well as the history of window systems.

Horton, W. K. (1990). Designing and Writing Online Documentation:
Help Files to Hypertext. Wiley, New York, NY. ISBN 0-471-50772-5.

Survey of issues in the design of all kinds of online documentation, including
error messages and help systems. Mostly about traditional linear text, though
with some coverage of hypertext and the use of media other than text (e.g.,
sound and animation). See the reviews in the ACM SIGCHI Bulletin 23, 3 (July
1991), 71-73, and IEEE Transactions on Professional Communication 33, 4
(December 1990), 178-181.

Karat, J. (1991). Taking Software Design Seriously: Practical Techniques
for Human—Computer Interaction Design. Academic Press, Boston,
MA. ISBN 0-12-397710-X.

Chapters on many different interface design methods, including case studies
from practitioners in industry, fairly general conceptualizations of the entire
design process, and detailed research on techniques for individual steps in the
design process.

Klemmer, E. R. (Ed.). (1989). Ergonomics: Harness the Power of
Human Factors in Your Business. Ablex, Norwood, NJ. ISBN 0-89391-
559-0.

Several case studies showing how large companies have organized and

managed their human factors efforts. This book is one of the few sources to
cover usability management issues in any great depth. See the review in the

296

Bibliography

Human Factors and Ergonomics Society Consumer Products Technical
Group’s CP News 16, 1 (March 1991), 5-6.

Laurel, B. (Ed.) (1990). The Art of Human—Computer Interface Design.
Addison-Wesley, Reading, MA. ISBN 0-201-51797-3.

Chapters by many avant-garde interface designers, including several associ-
ated with Apple Computer’s Advanced Technology Human Interface Group.

Marcus, A. (1992). Graphic Design for Electronic Documents and User
Interfaces. Addison-Wesley, Reading, MA. ISBN 0-201-54364-8.

The book covers many topics in graphic design and has an extensive anno-
tated bibliography about graphic design. It also contains a comparative survey
of the visual interface elements of six currently popular graphical user inter-
faces. See my review in Science of Computer Programming 18, 2 (April 1992),
218-221.

Monk, A., Wright, P., Haber, J., and Davenport, L. (1993). Improving
Your Human—Computer Interface: A Practical Technique. Prentice Hall
International, Hemel Hempstead, U.K. ISBN 0-13-010034-X.

Brief guide to user testing using the so-called cooperative evaluation approach.

Mullet, K., and Sarro, D. K. (1994). Designing Visual Interfaces:
Communication Oriented Techniques. Prentice Hall, Englewood Cliffs,
NJ. ISBN 0-13-303389-9.

One of the very few books on graphic design that actually explain the princi-
ples needed to design good graphical user interfaces.

Nielsen, J. (Ed.) (1989). Coordinating User Interfaces for Consistency.
Academic Press, Boston, MA. ISBN 0-12-518400-X.

The theory and practice of consistent user interfaces, including chapters
describing the approaches taken by several major computer vendors. See the
review in I[EEE Computer 23, 11 (November 1990), 131.

Nielsen, J. (Ed.) (1990). Designing User Interfaces for International
Use. Elsevier Science Publishers, Amsterdam, The Netherlands.
ISBN 0-444-88428-9.

Since many computer companies have more than half of their sales abroad, it
has become important to study the issues related to international usability.
Also, customers in various countries have become more critical of nonlocal-
ized software than they were in the past. See the reviews in Hypermedia 3, 1
(1991), 81-84, and Ergonomics 34, 10 (October 1991), 1335-1336.

297

Usability Engineering

Nielsen, J. (1990). Hypertext and Hypermedia. Academic Press,
Boston, MA. ISBN 0-12-518410-7 (hardcover), 0-12-518411-5 (paper-
back). Japanese translation ISBN 4-8337-8583-8.

Survey of hypertext systems, applications, history, and user interface issues.
Includes an extensive annotated and indexed bibliography. See the reviews in
Computing Reviews (review 9102-0048, February 1991); Electronic Publishing:
Origination, Dissemination and Design 3, 4 (November 1990), 235-236; Hyper-
media 2, 3 (1990), 266-268; and ACM SIGIR Forum 21, 1 (Spring 1991), 24-25.

Nielsen, J.,, and Mack, R. L. (Eds.) (1994). Usability Inspection
Methods. John Wiley & Sons, New York, NY, ISBN 0-471-01877-5.

Detailed advice on how to perform usability inspections, using methods like
heuristic evaluation, cognitive walkthroughs, and pluralistic walkthroughs,
with chapters by the inventors of these methods. Also contains chapters
comparing the methods and presenting research results on the relative costs
and benefits of the different methods under various circumstances.

Norman, D. A. (1988). The Psychology of Everyday Things. Basic
Books, New York, NY. ISBN 0-465-06709-3.

Very entertaining book about the “user interfaces” to everyday things like
door handles, consumer electronics, etc. Observing the human factors of non-
computer systems like alarm clocks at conference hotels gives the computer
professional an interesting chance to reflect on the ordinary user’s experience.
See the review in Artificial Intelligence 41, 1 (November 1989), 111-114. The soft-
cover edition was renamed The Design of Everyday Things (ISBN 0-385-26774-6)
since part of the management audience didn’t like the “psychology” bit, but
the softcover edition is otherwise identical to the hardcover edition.

Norman, D. A., and Draper, S. W. (Eds.) (1986). User Centered
System Design: New Perspectives on Human—Computer Interaction.
Lawrence Erlbaum Associates, Hillsdale, NJ. ISBN 0-89859-781-1.

The chapters in this book are written by many of the leading scientists in the
field and address important conceptual issues in the design of user interfaces.
See the review in the ACM SIGCHI Bulletin 18, 1 (July 1986), 67-68.

Olsen, D. R. (1991). User Interface Management Systems: Models and
Algorithms. Morgan Kaufmann Publishers, San Mateo, CA. ISBN 1-
55860-220-8.

Comprehensive survey of UIMS issues from the perspective of a programmer

wanting to implement such a system. Less aimed at programmers interested
in using an existing UIMS or choosing between the available offerings.

298

Bibliography

Tognazzini, B. (1992). Tog on Interface. Addison-Wesley, Reading,
MA. ISBN 0-201-60842-1.

While he was at Apple, the author of this book was probably only person in
the world with a job title of “interface evangelist.” He has several years of
experience trying to get third-party developers to conform to corporate stan-
dards and improve their interfaces and usability procedures. Much of the
advice in this book is especially applicable to smaller software companies
developing for personal computers with graphical user interfaces, but some
pragmatic development recommendations should be helpful to others also.
See my review in the ACM SIGCHI Bulletin 25, 2 (April 1993), 54-55.

Tufte, E. R. (1990). Envisioning Information. Graphics Press,
Cheshire, CT. No ISBN given in the book.

Beautifully illustrated book with examples of rich visualization design,
emphasizing how graphic design can be used to communicate complex data.
Unfortunately, the book is mostly about static images and does not discuss the
potential of animation and similar modern computer media. It is written from
an intuitive perspective, stressing what looked good to the author rather than
relying on scientific evidence. See the reviews in the ACM SIGDOC Journal of
Computer Documentation 15, 3 (November 1991), 3-11, and Journal of Classifica-
tion 8,2 (1991).

Vaske, J. J., and Grantham, C. E. (1990). Socializing the Human—
Computer Environment. Ablex, Norwood, NJ. ISBN 0-89391-471-1.

On the use of methods from social psychology and anthropology in the user
interface field.

Winograd, T., and Flores, F. (1987). Understanding Computers and
Cognition: A New Foundation for Design. Addison-Wesley, Reading,
MA. ISBN 0-201-11297-3.

A famous book that is unfortunately somewhat boring to read. The first 140
pages pontificate on philosophical issues in language understanding and arti-
ficial intelligence, but the last 40 pages contain advice on design that is also
useful for designers of more common user interfaces. See the review in IEEE
Computer 22,1 (January 1989), 156.

299

Usability Engineering

B.7 Guidelines

Many textbooks, such as [Mayhew 1992] (see page 291) contain
extensive user interface design guidelines. In-house guidelines and
standards are also an important part of the usability engineering
process in many development organizations (see also Chapter 8).
The following are some general guideline documents.

Brown, C. M. L. (1988). Human—Computer Interface Design Guide-
lines. Ablex, Norwood, NJ. ISBN 0-89391-332-4.

A nice collection with several examples of dos and don’ts. The guidelines are
not sufficiently cross-referenced, leading to problems for people who just look
one issue up in the index without being aware of related guidelines listed
under other headings. For example, there is no cross-reference from the
discussion of response times to the discussion of progress indicators which
may be used in cases where the response time just cannot be made sufficiently
good. See the review in the Human Factors and Ergonomics Society’s
Computer Systems Technical Group Bulletin 18, 1 (April 1991), 12.

DIN (1988). VDU Work Stations: Principles of Ergonomic Dialogue
Design. German Industrial Standard DIN 66234 Part 8.

The world’s first national standard for user interfaces. It is actually more in the
nature of broad principles and guidelines than very precise specifications.

Note that the version in the German language (Bildschirmarbeitsplitze: Grund-
sitze ergonomischer Dialoggestaltung) is the official standard.

Felker, D. B., Pickering, F., Charrow, V. R., Holland, V. M., and
Redish, J. C. (1981). Guidelines for Document Designers. Report from

American Institutes for Research, 1055 Thomas Jefferson Street
NW, Washington, DC 20007, USA.

Good collection of guidelines for writing manuals. Includes plenty of refer-
ences to the research done on this topic. The guidelines are mostly for writing
traditional, printed manuals but some also apply to online documentation.

Marshall, C., Nelson, C., and Gardiner, M. M. (1987). Design guide-
lines. In Gardiner, M. M., and Christie, B. (Eds.), Applying Cognitive
Psychology to User-Interface Design. John Wiley & Sons, Chichester,
U.K. 221-278.

An unusually principled approach to guidelines: Each of the 162 interface

guidelines in this chapter are related to general principles from cognitive
psychology that are explained in other chapters of the book.

300

Bibliography

Smith, S. L., and Mosier, J. N. (1986). Design Guidelines for Designing
User Interface Software. Technical Report MTR-10090, The MITRE
Corporation, Bedford, MA 01730, USA.

Probably the most extensive collection of guidelines for the different aspects of
the user interface. Because of U.S. Government sponsorship, this publication is
freely available and has been used as the basis for several hypertexts. People
with sufficient network access can download the ASCII text of the report by
FTP from the host ftp.cis.ohio-state.edu (IP address 128.146.8.52) as
pub/hci/guidelines.

Style Guides

Apple Computer (1992). Macintosh Human Interface Guidelines.
Addison-Wesley, Reading, MA. ISBN 0-201-62216-5.

This book is the second edition of the guidelines. It is about three times larger
than the first edition which was entitled Human Interface Guidelines: The Apple
Desktop Interface. Updates to the guidelines are available from Apple as
“Human Interface Notes.” These notes can be downloaded by people with
FTP network access from the server named ftp.apple.com, IP address
130.43.2.3, on the Internet (probably in the directory /dts/mac/docs/
stacks/hinstack).

Go Corporation (1992). PenPoint User Interface Design Reference.
Addison-Wesley, Reading, MA. ISBN 0-201-60858-8.

A pencentric interface for pen computer interfaces based on handwriting
recognition.

IBM (1993). Object-Oriented Interface Design: IBM Common User
Access Guidelines. IBM Document SC34-4399. Que Publishing,
Carmel, IN. ISBN 1-56529-170-0.

Microsoft Corporation (1992). The Windows Interface: An Application
Design Guide. Microsoft Press, Redmond, WA. ISBN 1-55615-384-8.
For international issues see the following book: Microsoft Corporation (1993).

The GUI Guide : International Terminology for the Windows Interface. Microsoft
Press, Redmond, WA. ISBN 1-55615-538-7.

NeXT Corporation (1992). NeXTSTEP User Interface Guidelines
Release 3. Addison-Wesley Publishing. ISBN 0-201-63250-0.

Open Software Foundation (1992). OSF/Motif™ Style Guide Release
1.2. Prentice Hall, Englewood Cliffs, NJ. ISBN 0-13-643123-2.

301

Usability Engineering

For further information, including design rationale, detailed examples, guide-
lines, and implementation details, see also Kobara, S. (1991). Visual Design with
OSF/Motif. Addison-Wesley, Reading, MA. ISBN 0-201-56320-7.

Sun Microsystems (1990). OPEN LOOK™ Graphical User Interface
Application Style Guidelines. Addison-Wesley, Reading, MA. ISBN 0-
201-52364-7.

B.8 Videotapes

Since modern user interfaces are highly dynamic, they often cannot
be adequately described in traditional papers. Therefore many
interfaces are best described by the videotaped demonstrations
that have become a major feature at the conferences on computer—
human interaction. A convenient source for collections of video-
tapes is the ACM SIGGRAPH Video Review. Each issue contains a
one-hour collection of videotapes. The first issue was “published”
in 1980 and by now, several issues are made available each year.
Especially recommended from a user interface point of view are
the tapes produced on the basis of the video shows at the annual
CHI conference (also distributed as part of the SIGGRAPH series).
The SIGGRAPH Video Review is available from:

SVR Order Department

¢/ o First Priority

PO Box 576

Itasca, IL 60143-0576

USA

Tel. (24 hr.) (800) 523-5503 or (708) 250-0807
Fax (708) 250-0038

Regarding the use of video in the user interface field, see also the
special issue of the ACM SIGCHI Bulletin on “Video as a Research
and Design Tool,” 21, 2 (October 1989).

OSF/Motif and Motif are trademarks of the Open Software Foundation, Inc.
OPEN LOOK is a trademark of AT&T.

302

Bibliography

The Human Factors and Ergonomics Society has produced a tape
entitled Human Factors Success Stories with brief presentations on
the application of human factors principles to everything from
aircrafts to computers, toothbrushes, and automobiles. The video-
tape is available for rental or purchase in both American and Euro-
pean video formats from:

Human Factors and Ergonomics Society
P.O. Box 1369

Santa Monica, CA 90406

USA

Tel. (310) 394-1811

Fax (310) 394-2410

An annual series of videotaped user interface lectures is being
produced by Ben Shneiderman at the University of Maryland
under the title User Interface Strategies. Each year, a new set of
leading user interface specialists participate and discuss their
recent work, often showing interesting video segments of new
interface ideas. See the review in IEEE Computer 26,1 (January
1993), p. 134. These tapes are available in both U.S. and European
formats (the latter being slightly more expensive). The UIS’94 show
had extensive coverage of usability engineering issues, including a
segment showing the SunSoft usability laboratory. For more infor-
mation, contact:

The University of Maryland

Instructional Television Systems
Engineering Classroom Building, Room 2104
College Park, MD 20742

USA

Tel. (301) 405-4913

Fax (301) 413-9639

303

Usability Engineering

B.9 Other Bibliographies

The British Computer Society’s Human-Computer Interaction
Specialist Group (The British HCI Group) publishes the HCI Book-
Views edited by Miles Macleod. The 1991 edition listed 75 user
interface books with suitability ratings for students, researchers,
and industry. These three sets of ratings were calculated as the
average scores reported by a fairly large number of readers and are
supplemented with one- or two-line comments from some of the
readers. For further information about this bibliography, contact
The British HCI Group, University of Glasgow, Department of
Computing Science, 17 Lilybank Gardens, Glasgow G12 8RZ, U.K.
Email membsec@dcs.glasgow.ac.uk.

The ACM Press published a book entitled Resources in Human—
Computer Interaction (ISBN 0-89791-373-6) in late 1990 with the
collected listings of user interface related references from the ACM
Guide to Computing Literature and the ACM Computing Reviews from
1983 to 1989.

Some special-topic bibliographies are

e [EEE Transactions on Professional Communication 33, 4 (December
1990). A special review issue with information about recent
books on documentation, manuals, and technical writing.

e Greenberg, S. (1991). An annotated bibliography of computer
supported cooperative work. ACM SIGCHI Bulletin 23, 3 (July),
29-62.

* Nielsen, J. (1990). Annotated bibliography of hypertext and
hypermedia. In Nielsen, J. (1990), Hypertext and Hypermedia,
Academic Press, Boston, MA. 199-252.

* Ramey, J. (1989). A selected bibliography: A beginner’s guide to
usability testing. IEEE Transactions on Professional Communication
32, 4 (December), 310-316. Covers usability testing with special
emphasis on the testing of documentation.

e Sabol, L., Rosen, C. M., and Koltay, Z. (1991). Health hazards of
video display terminals: A representative, annotated bibliog-
raphy. Science & Technology Libraries 12, 2, 85-129. Health-related
issues of hardware ergonomics.

304

mailto:membsec@dcs.glasgow.ac.uk.

Bibliography

A database of literature references in the user interface field up to
1980 was published in issues 8-11 of the IFIP INTERACT News-
letter, March-December 1983. This database was based on bibliog-
raphies from several reports, including Eason, K. D. (1981), An
annotated bibliography on user friendly systems, HUSAT Memo 232,
Loughborough University of Technology, U.K., and Jergensen, A.
H. (1980), An exploratory survey of the literature on man—computer
dialogue engineering, Report No. 80/15, Computer Science Depart-
ment, Copenhagen University, Denmark.

Bibliographic Databases

Gary Perlman [1991] is collecting a machine-readable database of
user interface references at Ohio State University, including the
CHI conferences and several other conferences, journals, and
books. The database includes tables of content for several books
and abstracts for many papers, thus having a potential for auto-
mated searches as explained below. The bibliography currently
contains about 8,000 entries. People with sufficient computer
network capabilities can download the database by FTP from the
host ftp.cis.ohio-state.edu (IP address 128.146.8.52) in
the pub/hcibib directory.

People who do not have FTP access but who do have access to elec-
tronic mail can get files from the database by sending email to a
special server at the address hcibib@cis.ohio-state.edu .
Your initial message should consist of a single line with the text :
Send: index

A computerized search facility allows people with Internet elec-
tronic mail access to perform keyword searches in the Perlman
bibliography. Queries should be sent by email to
hcibib@rumpus.colorado.edu

and should consist of lines of the following form:

query: keywordl keyword2 keyword3

Several queries can be submitted in a single message, but each
should be on a line by itself. Each query can use as many keywords
as necessary. An automated server using the latent semantic
indexing (LSI) information retrieval method [Deerwester et al.

305

e

mailto:hcibib@rumpus.colorado.edu

Usability Engineering

1990] will search the bibliography and will return a list of the best
matches and their abstracts by email. The server also allows
repeated searches using relevance feedback once a relevant
abstract has been found.

The HILITES database (HCI Information and Literature Enquiry
Service) is an even more extensive bibliography with more than
32,000 entries [Shackel et al. 1992]. It is available on a CD-ROM
from Loughborough University in the U.K.

B.10 References

The rest of this bibliography is a simple alphabetical list of the
references cited in this book.

A

Abernethy, C. N. (1988). Human—computer interface standards: Origins, orga-
nizations and comment. In Oborne, D. J. (Ed.), International Review of Ergo-
nomics 2, 31-54.

Abowd, G. D., and Dix, A. J. (1992). Giving undo attention. Interacting with
Computers 4, 3 (December), 317-342.

ACM SIGCHI (1992). Curricula for Human—Computer Interaction. Association for
Computing Machinery, New York, NY (ACM Order No. 608920). Also avail-
able for anonymous FTP downloading in rich text format (RTF) from
archive.cis.ohio-state.edu [128.146.8.52] in the directory /pub/hci/
CDG.

Alben, L., Faris, J., and Saddler, H. (1994). Making It Macintosh: Designing the
message when the message is design. ACM interactions 1, 1 (January), 10-20.

Allen, R. B. (1984). Working paper on ethical issues for research on the use of
computer services and interfaces. ACM SIGCHI Bulletin 16, 1 (July), 12-16.

American Psychological Association (1982). Ethical Principles in the Conduct of
Research with Human Participants. American Psychological Association, Wash-
ington, DC.

Andersen, M. H., Nielsen, J., and Rasmussen, H. (1989). A similarity-based
hypertext browser for reading the Unix network news. Hypermedia 1, 3, 255~
265.

Angiolillo, J. S., and Roberts, L. A. (1991). What makes a manual look easy to
use? Proc. Human Factors Society 35th Annual Meeting, 222-224.

306

Bibliography

Anonymous. (1990). Interface evolution: A collective timeline. In Laurel, B.
(Ed.), The Art of Human—Computer Interface Design. Addison-Wesley, Reading,
MA. 483.

Armstrong, J. S., and Lusk, E. J. (1988). Return postage in mail surveys. Public
Opinion Quarterly 51, 233-248. i

Aspray, W., and Beaver, D. (1986). Marketing the monster: Advertising
computer technology. Annals of the History of Computing 8, 2 (April), 127-143.

B

Bachman, R. D. (1989). A methodology for comparing the software interfaces
0" competitive products. Proc. Human Factors Society 33rd Annual Meeting,
1214-1217.

Baecker, R. M. (1989). A vision of education in user-centered system and inter-
face design. ACM SIGCHI Bulletin 20, 3 (January), 10-13.

Baecker, R. M., Small, I., and Mander, R. (1991). Bringing icons to life. In Proc.
ACM CHI'91 Conf. (New Orleans, LA, 28 April-2 May), 1-6.

Bailey, G. (1993). Iterative methodology and designer training in human-
computer interface design. Proc. ACM INTERCHI'93 Conf. (Amsterdam, The
Netherlands, 24-29 April), 198-205.

Bailey, R. W. (1991). Converting research into reality. Proc. Human Factors
Society 35th Annual Meeting, 345-349.

Bailey, W. A., Knox, S. T.,, and Lynch, E. F. (1988). Effects of interface design
upon user productivity. Proc. ACM CHI'88 Conf. (Washington, DC, 15-19
May), 207-212.

Bainbridge, L. (1979). Verbal reports as evidence of the process operator’s
knowledge. Intl.]. Man—Machine Studies 11, 411-436.

Banning, J. (1984). Beyond the application program: A different approach to
integrated software. BYTE 9, 1 (January), 251-262.

Barratt, M. (1991). A nice thing about Windows. Information Design Journal 6, 3,
257,

Becker, J. D. (1984). Multilingual word processing. Scientific American 251, 1
(July), 82-93.

Bellantone, C. E., and Lanzetta, T. M. (1991). ‘Works as advertised:" Observa-
tions and benefits of prototyping. Proc. Human Factors Society 35th Annual
Meeting, 324-327.

Bellotti, V. (1988). Implications of current design practice for the use of HCI
techniques. In Jones, D. M., and Winder, R. (Eds.), People and Computers IV.
Cambridge University Press, Cambridge, U.K., 13-34.

Benel, D. C. R., Ottens, D., Jr., and Horst, R. (1991). Use of an eyetracking
system in the usability laboratory. Proc. Human Factors Society 35th Annual
Meeting, 461-465.

307

Usability Engineering

Bentley, J. (1985). Programming pearls: A spelling checker. Communications of
the ACM 28, 5 (May), 456-462.

Berg, J. L., and Schumny, H. (Eds.) (1990). An Analysis of the Information Tech-
nology Standardization Process. Elsevier Science Publishers, Amsterdam, The
Netherlands.

Bernstein, M. (1988). The bookmark and the compass: Orientation tools for
hypertext users. ACM SIGOIS Bulletin 9, 4 (October), 34-45.

Berry, D. C., and Broadbent, D. E. (1990). The role of instruction and verbaliza-
tion in improving performance on complex search tasks. Behaviour & Informa-
tion Technology 9, 3 (May-June), 175-190.

Berry, R. E. (1988). Common User Access—A consistent and usable human-
computer interface for the SAA environment. IBM Systems Journal 27, 3, 281—
300.

Bewley, W. L., Roberts, T. L, Schroit, D., and Verplank, W. L. (1983). Human
factors testing in the design of Xerox’s 8010 ‘Star” office workstation. Proc.
ACM CHI'83 Conf. (Boston, MA, 12-15 December), 72-77.

Bias, R. (1991). Walkthroughs: Efficient collaborative testing. IEEE Software 8, 5
(September), 94-95.

Bickel, M. A. (1987). Automatic correction to misspelled names: A fourth-
generation language approach. Communications of the ACM 30, 3 (March), 224~
228.

Biocca, F. (1992). Virtual reality technology: A tutorial. Journal of Communica-
tion 42,4 (Autumn), 23-72.

Bisseret, A. (1983). Psychology for man computer cooperation in knowledge
processing. Proc. IFIP 9th World Computer Congress (Paris, 19-23 September),
113-120.

Bleser, T., and Foley, J. (1982). Towards specifying and evaluating the human
factors of user—computer interfaces. Proc. ACM Conf. Human Factors in
Computer Systems (Gaithersburg, MD, 15-17 March), 309-314.

Bleser, T. W., and Sibert, J. (1990). Toto: A tool for selecting interaction rules.
Proc. ACM UIST'90 Third Annual Symposium on User Interface Software and Tech-
nology (Snowbird, UT, 3-5 October), 135-142.

Bloom, C. P. (1987-88). Procedures for obtaining and testing user-selectec
terminologies. Human—Computer Interaction 3,2, 155-177.

Blumenthal, B. (1990). Strategies for automatically incorporating metaphoric
attributes in interface designs. Proc. ACM UIST'90 Third Annual Symposium on
User Interface Software and Technology (Snowbird, UT, 3-5 October), 66-75.

Boies, S. J., Gould, J. D., Levy, S., Richards, J. T., and Schoonard, J. (1985). The
1984 Olympic Message System: A case study in system design. Research Report
RC11138, IBM T. J. Watson Research Center, Yorktown Heights, NY.

Booth, P. A. (1990). Identifying and interpreting design errors. Intl. |. Human—
Computer Interaction 4, 2, 307-332.

308

Bibliography

Borenstein, N. S. (1985). The design and evaluation of on-line help systems.
Technical Report CMU-CS-85-151, Department of Computer Science, Carnegie-
Mellon University, Pittsburgh, PA.

Bradford, J. H., Murray, W. D., and Carey, T. T. (1990). What kind of errors do
Unix users make? Proc. IFIP INTERACT'90 Third Intl. Conf. Human—Computer
Interaction (Cambridge, U.K., 27-31 August), 4346.

Brigham, F. R. (1989). Statistical methods for testing the conformance of prod-
ucts to user performance standards. Behaviour & Information Technology 8, 4,
279-283.

Brooke, J., Bevan, N., Brigham, F. R., Harker, S., and Youmans, D. (1990).
Usability assurance and standardization—work in progress in ISO. Proc. IFIP
INTERACT'90 Third Intl. Conf. Human—Computer Interaction (Cambridge, UK.,
27-31 August), 357-361.

Brooks, E. P. (1975). The Mythical Man-Month. Addison-Wesley, Reading, MA.

Brooks, E. P. (1987). No silver bullet: Essence and accidents of software engi-
neering. IEEE Computer 20, 4 (April), 10-19.

Brooks, R. (1993). The case for the specialized interface. IEEE Software 10, 2
(March), 86-88.

Brothers, L., Hollan, J., Nielsen, J., Stornetta, S., Abney, S., Furnas, G., and
Littman, M. (1992). Supporting informal communication via ephemeral
interest groups. Proc. ACM CSCW’92 Conf. Computer-Supported Cooperative
Work (Toronto, Canada, 1-4 November), 84-90.

Brown, C. M. L. (1988). Human—Computer Interface Design Guidelines. Ablex,
Norwood, NJ.

Brugger, C. (1990). Advances in the international standardization of public
information symbols. Information Design Journal 6, 1, 79-88.

Byrne, J. G. (1989). Competitive evaluation in industry: Some comments. Proc.
Human Factors Society 33rd Annual Meeting, 423-425.

&

Caesar, G. J. (51 B.C.). De Bello Gallico. Manuscript, Roman Empire. Also avail-
able in several translations, including The Conquest of Gaul, translated by
Handford, S. A., Penguin Books, London, U.K., 1951.

Campbell, R. L. (1992). Will the real scenario please stand up? ACM SIGCHI
Bulletin 24, 2 (April), 6-8.

Canadian Standards Association (1992). Canadian Alphanumeric Ordering Stan-
dard for Character Sets of CSA Standard CAN/CSA-Z243.4. Standard Z243.4.1,
Canadian Standards Association, Rexdale, Ontario, Canada.

Caplan, S. (1990). Using focus groups methodology for ergonomic design.
Ergonomics 33, 5, 527-533.

309

Usability Engineering

Card, S. K, and Henderson, D. A. (1987). Catalogues: A metaphor for
computer application delivery. Proc. IFIP INTERACT’87 Second Intl. Conf.
Human—Computer Interaction (Stuttgart, Germany, 1-4 September), 959-964.

Card, S. K., and Moran, T. P. (1988). User technology: From pointing to
pondering. In Goldberg, A. (Ed.), A History of Personal Workstations. Addison-
Wesley, Reading, MA. 489-526.

Card, S. K., English, W. K., and Burr, B. J. (1978). Evaluation of the mouse, rate-
controlled isometric joystick, step keys, and text keys for text selection on a
CRT. Ergonomics 21, 601-613.

Card, S. K., Moran, T. P.,, and Newell, A. (1983). The Psychology of Human-
Computer Interaction. Lawrence Erlbaum Associates, Hillsdale, NJ.

Card, S. K., Robertson, G. G., and Mackinlay, J. D. (1991). The information
visualizer: An information workspace. Proc. ACM CHI'91 Conf. (New Orleans,
LA, 28 April-2 May), 181-188.

Carey, T. (1989). Position paper: The basic HCI course for software engineers.
ACM SIGCHI Bulletin 20, 3 (January), 14-15.

Carroll, J. M. (1990a). The Nurnberg Funnel: Designing Minimalist Instruction for
Practical Computer Skill. The MIT Press, Cambridge, MA.

Carroll, J. M. (1990b). Infinite detail and emulation in an ontologically mini-
mized HCI. Proc. ACM CHI'90 Conf. (Seattle, WA, 1-5 April), 321-327.

Carroll, J. M., and Campbell, R. L. (1986). Softening up hard science: Reply to
Newell and Card. Human—Computer Interaction 2, 3, 227-249.

Carroll, J. M., and Carrithers, C. (1984). Training wheels in a user interface.
Communications of the ACM 27, 8 (August), 800-806.

Carroll, J. M., and Rosson, M. B. (1987). Paradox of the active user. In Carroll, J.
M. (Ed.), Interfacing Thought: Cognitive Aspects of Human—Computer Interaction.
The MIT Press, Cambridge, MA. 80-111.

Carroll, J. M., and Rosson, M. B. (1990). Human—computer interaction
scenarios as a design representation. Proc. IEEE HICSS-23, 23rd Hawaii Intl.
Conf. System Sciences (Hawaii, 2-6 January), Vol. II, 555-561.

Carroll, J. M., and Rosson, M. B. (1991). Deliberated evolution: Stalking the
View Matcher in design space. Human—Computer Interaction 6,3 and 4, 281-318.

Carroll, J. M., and Rosson, M. B. (1992). Getting around the task-artifact cycle:
How to make claims and design by scenario. ACM Transactions on Information
Systems 10, 2 (April), 181-212.

Carroll, J. M., and Thomas, J. C. (1988). Fun. ACM SIGCHI Bulletin 19, 3
(January), 21-24.

Carroll, J. M., Mack, R. L., Lewis, C. H., Grischkowsky, N. L., and Robertson, S.
R. (1985). Exploring exploring a word processor. Human—Computer Interaction
1, 3, 283-307.

310

Bibliography

Carroll, J. M., Smith-Kerker, P. L., Ford, J. R., and Mazur-Rimetz, S. A. (1987-
88). The minimal manual. Human—Computer Interaction 3,2, 123-153.

Carroll, J. M., Mack, R. L., and Kellogg, W. A. (1988). Interface metaphors and
user interface design. In Helander, M. (Ed.), Handbook of Human—Computer
Interaction. North-Holland, Amsterdam, The Netherlands. 67-85.

Carroll, J. M., Kellogg, W. A., and Rosson, M. B. (1991). The task-artifact cycle.
In Carroll, J. M. (Ed.), Designing Interaction: Psychology at the Human—Computer
Interface. Cambridge University Press, Cambridge, U.K. 74-102.

Catrambone, R., and Carroll, J. M. (1987). Learning a word processing system
with guided exploration and training wheels. Proc. ACM CHI+GI'87 Conf.
(Toronto, Canada, 5-9 April), 169-174.

Chapanis, A. (1991). The business case for human factors in informatics. In
Shackel, B., and Richardson, S. (Eds.), Human Factors for Informatics Usability.
Cambridge University Press, Cambridge, U.K. 21-37.

Chapanis, A., and Budurka, W. J. (1990). Specifying human—computer inter-
face requirements. Behaviour & Information Technology 9, 6, 479-492.

Chin, J. P, Diehl, V. A., and Norman, K. L. (1988). Development of an instru-
ment measuring user satisfaction of the human—computer interface. Proc.
ACM CHI'88 Conf. (Washington, DC, 15-19 May), 213-218.

Clarke, L. (1991). The use of scenarios by user interface designers. In Diaper,
D., and Hammond, N. (Eds.), People and Computers VI, Cambridge University
Press, Cambridge, U.K. 103-115.

Coleman, W. D., Williges, R. C., and Wixon, D. R. (1985). Collecting detailed
user evaluations of software interfaces. Proc. Human Factors Society 29th Annual
Meeting, 240-244.

Comstock, E. M., and Clemens, E. A. (1987). Perceptions of computer manuals:
A view from the field. Proc. Human Factors Society 31st Annual Meeting, 139—
143.

Conklin, J., and Begeman, M. L. (1988). gIBIS: A hypertext tool for exploratory
policy discussion. ACM Trans. Office Information Systems 6, 4 (October), 303
331L

Conklin, J. E., and Yakemovic, K. C. B. (1991). A process-oriented approach to
design rationale. Human—Computer Interaction 6, 3 and 4, 357-391.

Connally, C. S., and Tullis, T. S. (1986). Evaluating the user interface: Video-
taping without a camera. Proc. Human Factors Society 30th Annual Meeting,
1029-1033.

Cool, C., Fish, R. S., Kraut, R. E., and Lowery, C. M. (1992). Iterative design of
video communication systems. Proc. ACM CSCW'92 Conf. Computer-Supported
Cooperative Work (Toronto, Canada, 1-4 November), 25-32.

Cordes, R. E. (1993). The relationship between post-task and continuous-vicar-
ious ratings of difficulty. Intl. |]. Human—Computer Interaction 5,2, 115-127.

311

Usability Engineering

Cordingley, E. (1989). Knowledge elicitation techniques for knowledge based
systems. In Diaper, D. (Ed.), Knowledge Elicitation: Principles, Techniques, and
Applications. Ellis Horwood, Chichester, U.K. 89-172.

Cotterman, W. W., and Kumar, K. (1989). User cube: A taxonomy of end users.
Communications of the ACM 32, 11 (November), 1313-1320.

Curtis, B. (1981). Substantiating programmer variability. Proceedings of the IEEE
69, 7 (July), 846.

Czaja, S. J. (1988). Microcomputers and the elderly. In Helander, M. (Ed.),
Handbook of Human—Computer Interaction, Elsevier Science Publishers,
Amsterdam, The Netherlands. 581-598.

Czaja, S. J.,, Hammond, K., Blascovich, J. J., and Swede, H. (1989). Age related
differences in learning to use a text-editing system. Behaviour & Information
Technology 8, 4, 309-319.

D

Dale, E., and O'Rourke,]J. (1981). The Living Word Vocabulary. World Book-
Childcraft International, Chicago, IL.

Dayton, T., Barr, B., Burke, P. A., Cohill, A. M., Day, M. C., Dray, S., Ehrlich, K.,
Fitzsimmons, L. A., Henneman, R. L., Hornstein, S. B., Karat, J., Kliger, J.,
Lowgren, J., Rensch, J., Sellers, M., and Smith, M. R. (1993). Skills needed by
user-centered design practitioners in real software development environ-
ments: Report on the CH’92 workshop. ACM SIGCHI Bulletin 25, 3 (July), 16~
31.

de Baar, D., Foley, J., and Mullet, K. (1992). Coupling application design and
user interface design. Proc. ACM CHI'92 Conf. (Monterey, CA, 3-7 May), 259-
266.

de Souza, F.,, and Bevan, N. (1990). The use of guidelines in menu interface
design. Proc. IFIP INTERACT'90 Third Intl. Conf. Human—Computer Interaction
(Cambridge, U.K., 27-31 August), 435-440.

Deerwester, S., Dumais, S. T., Landauer, T. K., Furnas, G. W., and Harshman, R.
A. (1990). Indexing by latent semantic analysis. Journal of the Society for Informa-
tion Science 41, 6, 391407.

del Galdo, E. (1990). Internationalization and translation: Some guidelines for
the design of human—computer interfaces. In Nielsen, J. (Ed.), Designing User
Interfaces for International Use. Elsevier Science Publishers, Amsterdam, The
Netherlands. 71-102.

Denning, S., Hoiem, D., Simpson, M., and Sullivan, K. (1990). The value of
thinking-aloud protocols in industry: A case study at Microsoft Corporation.
Proc. Human Factors Society 34th Annual Meeting, 1285-1289.

Desurvire, H. W., Kondziela, J. M., and Atwood, M. E. (1992). What is gained
and lost when using evaluation methods other than empirical testing. In

312

Bibliography

Monk, A., Diaper, D., and Harrison, M. D. (Eds.), People and Computers VII,
Cambridge University Press, Cambridge, U.K. 89-102.

Diaper, D. (Ed.) (1989a). Task Analysis for Human—Computer Interaction. Ellis
Horwood, Chichester, U.K.

Diaper, D. (1989b). Task observation for human-computer interaction. In
Diaper, D. (Ed.), Task Analysis for Human—-Computer Interaction. Ellis Horwood,
Chichester, U.K. 210-237.

Diaper, D., and Johnson, P. (1989). Task analysis for knowledge descriptions:
Theory and application in training. In Long, J., and Whitefield, A. (Eds.),
Cognitive Ergonomics and Human—Computer Interaction. Cambridge University
Press, Cambridge, U.K. 191-224.

DIN (1988). Bildschirmarbeitsplitze: Grundsitze ergonomischer Dialoggestaltung
(“VDU work stations: Principles of ergonomic dialogue design,” in German),
Deutsches Institut fiir Normung DIN 66234, Teil 8.

Doane, S. M., Pellegrino, J. W., and Klatzky, R. L. (1990). Expertise in a
computer operating system: Conceptualization and performance. Human—
Computer Interaction 5,2 and 3, 267-304.

Doane, S. M., McNamara, D. S., Kintsch, W., Polson, P. G., and Clawson, D. M.
(1992). Prompt comprehension in UNIX command production. Memory &
Cognition 20, 4 (July), 327-343.

Dourish, P., and Bly, S. (1992). Portholes: Supporting awareness in a distrib-
uted work group. In Proc. ACM CHI'92 Conf. (Monterey, CA, 3-7 May), 541—
547.

Doyle, J. R. (1990). Naive users and the Lotus interface: A field study. Behaviour
& Information Technology 9, 1, 81-89.

Draper, S. W. (1984). The nature of expertise in Unix. Proc. IFIP INTERACT'84
First Intl. Conf. Human—Computer Interaction (London, UK., 4-7 September),
465-471.

Dreger, L., Grauman, A., Ho, T., Howlett, V., Lehmann, R., Malamud, M.,
Marceau, R., and Tobey, C. (1992). An object-oriented evolution of Windows:
Information at your fingertips (videotape). ACM SIGGRAPH Video Review 78.

Dubberly, H., and Mitsch, D. (1987). Knowledge Navigator (videotape). ACM
SIGGRAPH Video Review 79 (anthology published 1992; tape made in 1987).

Duffy, T. M., Palmer, J. E., and Mehlenbacher, B. (1992). Online Help: Design and
Evaluation. Ablex, Norwood, NJ.

Duis, D., and Johnson, J. (1990). Improving user-interface responsiveness
despite performance limitations. Proc. IEEE Computer Society Intl. Conference
(February, San Francisco, CA), 380-386.

Durham, I., Lamb, D. A., and Saxe, J. B. (1983). Spelling correction in user
interfaces. Communications of the ACM 26, 10 (October), 764-773.

Durrett, H. J. (Ed.) (1987). Color and the Computer. Academic Press, Boston, MA.

313

Usability Engineering

Durrett, H. J., and Trezona, J. (1982). How to use color displays effectively.
BYTE 7, 4 (April), 50-53.

Dye, R., Arnott, J. L., Newell, A. E, Carter, K. E. P, and Cruikshank, G. (1990).
Simulating the speech operated user interfaces of the future: The case of
listening typewriters. In Life, M. A., Narborough-Hall, C. S., and Hamilton, W.
L. (Eds.), Simulation and the User Interface. Taylor & Francis, London, U.K. 159-
168.

Dzida, W. (1989). The development of ergonomic standards. ACM SIGCHI
Bulletin 20, 3 (January), 35-43.

E

Eberts, R. E., and MacMillan, A. G. (1987). Longitudinal study of a distributed
system. Proc. Human Factors Society 28th Annual Meeting, 704-708.

Edgerton, E. A., Draper, S. W., and Barton, S. B. (1993). Feature checklists in
HCI: Some basic results. Adjunct Proceedings ACM INTERCHI'93 Conf. (24-29
April), 189-190.

Edmonds, E. (1991). The Separable User Interface. Academic Press, London, U.K.

Edwards, A. D. N. (1988). The design of auditory interfaces for visually
disabled users. Proc. ACM CHI'88 Conf. (Washington, DC, 15-19 May), 83-88.

Efe, K. (1987). A proposed solution to the problem of levels in error-message
generation. Communications of the ACM 30, 11 (November), 948-955.

Egan, D. E. (1988). Individual differences in human—computer interaction. In
Helander, M. (Ed.), Handbook of Human—Computer Interaction. North-Holland,
Amsterdam, The Netherlands. 543-568.

Egan, D. E., Remde, J. R., Gomez, L. M., Landauer, T. K., Eberhardt, J., and
Lochbaum, C. C. (1989). Formative design-evaluation of SuperBook. ACM
Transactions on Information Systems 7, 1 (January), 30-57.

Egan, T. (1991). Oregon literacy test shows many lag in basics. The New York
Times (April 24), p. A23.

Egido, C., and Patterson, J. (1988). Pictures and category labels as navigational
aids for catalog browsing. Proc. ACM CHI'88 Conf. (15-19 May, Washington,
DC), 127-132.

Ehrenreich, S. L. (1985). Computer abbreviations: Evidence and synthesis.
Human Factors 27, 143-155.

Ehrlich, K., Butler, M. B., and Pernice, K. (1994). Getting the whole team into
usability testing. IEEE Software 11, 1 (January), 89-91.

Engelbart, D. (1988). The augmented knowledge workshop. In Goldberg, A.
(Ed.), A History of Personal Workstations. Addison-Wesley, Reading, MA. 185-
236.

Ericsson, K. A., and Simon, H. A. (1984). Protocol Analysis: Verbal Reports as
Data. The MIT Press, Cambridge, MA.

314

Bibliography

F

Farkas, D. K. (1993). The role of balloon help. ACM SIGDOC *The Journal of
Computer Documentation 17, 2 (May), 3-19.

Farrand, A. B., and Wolfe, S. J. (1992). On-line help: Are we tossing the users a
lifesaver or an anchor? Digest of ACM CHI'92 Conf. Posters and Short Talks
(Monterey, CA, 5 May), 21.

Fath, J. L., and Bias, R. G. (1992). Taking the task out of task analysis. Proc.
Human Factors Society 36th Annual Meeting, 379-383.

Feiner, S. K., and McKeown, K. R. (1990). Generating coordinated multimedia
explanations. Proc. IEEE Conf. on Al Applications (Santa Barbara, CA, 5-9
March), 290-296.

Feiner, S. K., and McKeown, K. R. (1991). COMET: Generating coordinated
multimedia explanations. Proc. ACM CHI'91 Conf. (New Orleans, LA, 28
April-2 May), 449-450.

Fisher, D. L., Yungkurth, E. J., and Moss, S. M. (1990). Optimal menu hierarchy
design: Syntax and semantics. Human Factors 32, 6 (June), 655-683.

Fisher, P, and Sless, D. (1990). Information design methods and productivity
in the insurance industry. Information Design Journal 6, 2, 103-129.

Flohr, U. (1994). Teutonizing the Newton. BYTE 19, 3 (March), 26.

Fowler, C. J. H., and Murray, D. (1987). Gender and cognitive style differences
at the human—computer interface. Proc. IFIP INTERACT’87 Second Intl. Conf.
Human—Computer Interaction (Stuttgart, Germany, 1-4 September), 709-714.

Frese, M., Brodbeck, E., Heinbokel, T., Mooser, C., Schleiffenbaum, E., and
Thiemann, P. (1991). Errors in training computer skills: On the positive func-
tion of errors. Human—Computer Interaction 6,1, 77-93.

Furnas, G. W. (1985). Experience with an adaptive indexing scheme. Proc.
ACM CHI'85 Conf. (San Francisco, CA, 14-18 April), 131-135.

Furnas, G. W., Landauer, T. K., Gomez, L. M., and Dumais, S. T. (1987). The
vocabulary problem in human-system communication. Communications of the
ACM 30, 11 (November), 964-971.

G

Gaines, B. R. (1984). From ergonomics to the fifth generation: 30 years of
human-computer interaction studies. Proc. IFIP INTERACT'84 First Intl. Conf.
Human—Computer Interaction (London, U.K., 4-7 September), 3-7.

Gaines, B. R., and Shaw, M. L. G. (1986a). From timesharing to the sixth gener-
ation: The development of human-computer interaction. Part 1. Intl.]. Man—
Machine Studies 24, 1 (January), 1-27.

Gaines, B. R., and Shaw, M. L. G. (1986b). Foundations of dialog engineering:
The development of human—computer interaction. Part II. Intl.]. Man-Machine
Studies 24, 2 (February), 101-123.

315

Usability Engineering

Gantt, M., and Nardi, B. A. (1992). Gardeners and gurus: Patterns of coopera-
tion among CAD users. Proc. ACM CHI'92 Conf. (Monterey, CA, 3-7 May),
107-117.

Garber, S. R., and Grunes, M. B. (1992). The art of search: A study of art direc-
tors. Proc. ACM CHI'92 Conf. (Monterey, CA, 3-7 May), 157-163.

Gates, B. (1990). Information at Your Fingertips (videotape). Microsoft Corp.,
Redmond, WA.

Gaver, W. W. (1989). The SonicFinder: An interface that uses auditory icons.
Human—Computer Interaction 4, 1, 67-94.

Gaylin, K. B. (1986). How are windows used? Some notes on creating an
empirically-based windowing benchmark task. Proc. ACM CHI'86 Conf.
(Boston, MA, 13-17 April), 96-100.

Gilmore, D. J. (1991). Visibility: A dimensional analysis. In Diaper, D., and
Hammond, N. (Eds.), People and Computers VI, Cambridge University Press,
Cambridge, U.K. 317-329.

Goldberg, A. (Ed.) (1988). A History of Personal Workstations. Addison-Wesley,
Reading, MA.

Goldman, A. E., and McDonald, S. S. (1987). The Group Depth Interview: Princi-
ples and Practice. Prentice Hall, Englewood Cliffs, NJ.

Gomez, L. M., Egan, D. E., and Bowers, C. (1986). Learning to use a text editor:
Some learner characteristics that predict success. Human—Computer Interaction
2,1,1-23.

Good, M. (1989). Developing the XUI style. In Nielsen, J. (Ed.), Coordinating
User Interfaces for Consistency, Academic Press, Boston, MA. 57-73.

Good, M., Spine, T. M., Whiteside, J., and George, P. (1986). User-derived
impact analysis as a tool for usability engineering. Proc. ACM CHI'86 Conf.
(Boston, MA, 13-17 April), 241-246.

Gould, J. D., and Lewis, C. H. (1985). Designing for usability: Key principles
and what designers think. Communications of the ACM 28, 3 (March), 300-311.

Gould, J. D., Conti, J., and Hovanyecz, T. (1983). Composing letters with a
simulated listening typewriter. Communications of the ACM 26, 4 (April), 295-
308.

Gould, J. D., Boies, S. J., Levy, S., Richards,]J. T., and Schoonard, J. (1987). The
1984 Olympic Message System: A test of behavioral principles of system
design. Communications of the ACM 30, 9 (September), 758-769.

Gould, J. D., Boies, S. J., and Lewis, C. (1991). Making usable, useful, produc-
tivity-enhancing computer applications. Communications of the ACM 34, 1
(January), 74-85.

Gray, B. G., Barfield, W., Haselkorn, M., Spyridakis, J., and Conquest, L. (1990).
The design of a graphics-based traffic information system based on user
requirements. Proc. Human Factors Society 34th Annual Meeting, 603-606.

316

Bibliography

Gray, W. D., John, B. E., and Atwood, M. E. (1992). The precis of project Ernes-
tine, or, an overview of a validation of GOMS. Proc. ACM CHI'92 Conf.
(Monterey, CA, 3-7 May), 307-312.

Green, A. J. K., and Barnard, P. J. (1990). Iconic interfacing: The role of icon
distinctiveness and fixed or variable screen locations. Proc. IFIP INTERACT’90
Third Intl. Conf. Human—Computer Interaction (Cambridge, U.K., 27-31 August),
457-462.

Greenbaum, T. L. (1988). The Practical Handbook and Guide to Focus Group
Research. D. C. Heath & Co., Lexington, MA.

Greenbaum, T. L. (1993). The Handbook for Focus Group Research. Lexington
Books, New York, NY.

Greenberg, S. (1993). The Computer User as Toolsmith: The Use, Reuse, and Orga-
nization of Computer-Based Tools. Cambridge University Press, Cambridge, U.K.

Greenberg, S., and Whitten, I. H. (1985). Adaptive personalized interfaces—A
question of viability. Behaviour & Information Technology 4, 1 (January), 31-45.

Greenberg, S., and Whitten, I. H. (1988). How users repeat their actions on
computers: Principles for design of history mechanisms. Proc. ACM CHI'88
Conf. (Washington, DC, 15-19 May), 171-178.

Greif, I. (1992). Designing group-enabled applications: A spreadsheet
example. In Coleman, D. (Ed.), Groupware'92, Morgan Kaufmann Publishers,
San Mateo, CA. 515-525.

Greif, S. (1991). Organisational issues and task analysis. In Shackel, B., and
Richardson, S. (Eds.), Human Factors for Informatics Usability. Cambridge
University Press, Cambridge, U.K. 247-266.

Griffith, D. (1990). Computer access for persons who are blind or visually
impaired: Human factors issues. Human Factors 32, 4 (August), 467-475.

Grudin, J. (1988). Why CSCW applications fail: Problems in the design and
evaluation of organizational interfaces. Proc. ACM CSCW'88 Conf. Computer-
Supported Cooperative Work (Portland, OR, 26-28 September), 85-93.

Grudin, J. (1989). The case against user interface consistency. Communications
of the ACM 32, 10 (October), 1164-1173.

Grudin, J. (1990a). The computer reaches out: The historical continuity of
interface design. Proc. ACM CHI'90 Conf. (Seattle, WA, 1-5 April), 261-268.

Grudin, J. (1990b). Obstacles to user involvement in interface design in large
product development organizations. Proc. IFIP INTERACT'90 Third Intl. Conf.
Human—Computer Interaction (Cambridge, U.K., 27-31 August), 219-224.

Grudin, J. (1991a). Interactive systems: Bridging the gaps between developers
and systems. IEEE Computer 24, 4 (April), 59-69.

Grudin, J. (1991b). Systematic sources of suboptimal interface design in large
product development organizations. Human—Computer Interaction 6, 2, 147—
196.

317

Usability Engineering

Grudin, J. (1992). Utility and usability: Research issues and development
contexts. Interacting with Computers 4, 2 (August), 209-217.

Grudin, J. (1993). Interface: An evolving concept. Communications of the ACM
36, 4 (April), 110-119.

Grudin, J., and Barnard, P. (1985). When does an abbreviation become a word?
and related questions. Proc. ACM CHI'85 Conf. (San Francisco, CA, 14-18
April), 121-125.

Grudin, J., Ehrlich, S. F,, and Shriner, R. (1987). Positioning human factors in
the user interface development chain. Proc. ACM CHI+GI'87 Conf. (Toronto,
Canada, 5-9 April), 125-131.

H

Hackman, G. S., and Biers, D. W. (1992). Team usability testing: Are two heads
better than one? Proc. Human Factors Society 36th Annual Meeting, 1205-1209.

Hakiel, S. R., and Easterby, R. S. (1987). Methods for the design and evaluation
of icons for human—computer interfaces. Proc. IEE 2nd Intl. Conf. Command,
Control, Communications and Management Information Systems (Bournemouth,
U.K,, 1-3 April), 48-51.

Halasz, F., and Moran, T. P. (1982). Analogy considered harmful. Proc. ACM
Conf. Human Factors in Computer Systems (Gaithersburg, MD, 15-17 March),
383-386.

Halstead-Nussloch, R. (1989). The design of phone-based interfaces for
consumers. Proc. ACM CHI'89 Conf. (Austin, TX, 30 April-4 May), 347-352.

Happ, A. J. (1994). Usability foresight: Strategic usability planning. ACM
SIGCHI Bulletin 26, 1 (January), 17-21.

Harris, D. H. (1984). Human factors success stories. Proc. Human Factors Society
28th Annual Meeting, 1-5.

Hartson, H. R., and Hix, D. (1989). Human-computer interface development:
Concepts and systems for its management. ACM Computing Surveys 21, 1
(March), 5-93.

Hartson, H. R., and Smith, E. C. (1991). Rapid prototyping in human-
computer interface development. Interacting with Computers 3,1, 51-91.

Hartson, H. R., Siochi, A. C., and Hix, D. (1990). The UAN: A user-oriented

representation for direct manipulation interface. ACM Transactions on Informa-
tion Systems 8, 3 (July), 181-203.

Henderson, D. A., and Card, S. K. (1986). Rooms: The use of multiple virtual
workspaces to reduce space contention in a window-based graphical user
interface. ACM Transactions on Graphics 5, 3, 211-243.

Hewett, T. T., and Scott, S. (1987). The use of thinking-out-loud and protocol
analysis in development of a process model of interactive database searching.
Proc. IFIP INTERACT'87 Second Intl. Conf. Human—Computer Interaction (Stutt-
gart, Germany, 14 September), 51-56.

318

Bibliography

Hill, W. C., and Hollan, J. D. (1992). Edit wear and read wear. Proc. ACM
CHI'92 Conf. (Monterey, CA, 3-7 May), 3-9.

Hix, D. (1990). Generations of user-interface management systems. IEEE Soft-
ware 7, 5 (September), 77-87.

Hix, D., and Schulman, R. S. (1991). Human—computer interface development
tools: A methodology for their evaluation. Communications of the ACM 34, 3
(March), 74-87.

Hodges, M. E., Davis, B. H., and Sasnett, R. M. (1989). Investigations in multi-
media design documentation. In Barrett, E. (Ed.), The Society of Text: Hypertext,
Hypermedia, and the Social Construction of Information. The MIT Press,
Cambridge, MA. 79-89.

Hoffberg, L. I. (1991). Designing user interface guidelines for time-shift
programming on a video cassette recorder (VCR). Proc. Human Factors Society
35th Annual Meeting, 501-504.

Hoiem, D. E., and Sullivan, K. D. (1994). Designing and using integrated data
collection and analysis tools: Challenges and considerations. Behaviour & Infor-
mation Technology 13, 1&2 (January—April), 160-170.

Holdaway, K., and Bevan, N. (1989). User system interaction standards.
Computer Communications 12, 2 (April), 97-102.

Hollan, J., and Stornetta, S. (1992). Beyond being there. Proc. ACM CHI'92 Conf.
(Monterey, CA, 3-7 May), 119-125.

Holleran, P. A. (1991). A methodological note on pitfalls in usability testing.
Behaviour & Information Technology 10, 5 (September—October 1991), 345-357.

Horton, W. K. (1990). Designing and Writing Online Documentation: Help Files to
Hypertext. Wiley, New York, NY.

Houde, S. (1992). Iterative design of an interface for easy 3-D direct manipula-
tion. Proc. ACM CHI'92 Conf. (Monterey, CA, 3-7 May), 135-142.

Houghton, R. C., Jr. (1984). Online help systems: A conspectus. Communica-
tions of the ACM 27, 2 (February), 126-133.

House, C. H., and Price, R. L. (1991). The return map: Tracking product teams.
Harvard Business Review (January—February), 92-100.

I

Ishii, H. (1990). Cross-cultural communication and computer-supported coop-
erative work. Whole Earth Review, No. 69 (Winter 1990), 48-52.

J

Jacob, R.J. K. (1991). The use of eye movements in human—computer interac-
tion techniques: What you look at is what you get. ACM Trans. Information
Systems 9, 2 (April), 152-169.

319

Usability Engineering

Jeffries, R., Miller, J. R., Wharton, C., and Uyeda, K. M. (1991). User interface
evaluation in the real world: A comparison of four techniques. Proc. ACM
CHI'91 Conf. (New Orleans, LA, 28 April-2 May), 119-124.

John, B. E., Miller, P. L., Myers, B. A., Neuwirth, C. M., and Shafer, S. A. (1992).
Human—computer interaction in the School of Computer Science. Technical
Report CMU-CS-92-193, Computer Science Department, Carnegie Mellon
University, Pittsburgh, PA. Available by anonymous FTP from
reports.adm.cs.cmu.edu [128.2.218.42] as /1992 /CMU-CS-92-193.ps

Johnson, C. W. (1991). Applying temporal logic to support the specification
and prototyping of concurrent multi-user interfaces. In Diaper, D., and
Hammond, N. (Eds.), People and Computers VI, Cambridge University Press,
Cambridge, U.K. 145-156.

Johnson, J. A., Nardi, B. A., Zarmer, C. L., and Miller, J. R. (1993). ACE:
Building interactive graphical applications. Communications of the ACM 36, 4
(April), 41-55.

Johnson, H., and Johnson, P. (1990). Designers-identified requirements for
tools to support task analysis. Proc. IFIP INTERACT'90 Third Intl. Conf.
Human—Computer Interaction (Cambridge, U.K., 27-31 August), 259-264.

Johnson, P. (1992). Human Computer Interaction: Psychology, Task Analysis and
Software Engineering. McGraw-Hill, London, U.K.

Johnson, W., Jellinek, H. D., Klotz, L., Rao, R., and Card, S. K. (1993). Bridging
the paper and electronic worlds: The paper user interface. Proc. ACM
INTERCHI'93 Conf. (Amsterdam, The Netherlands, 24-29 April), 507-512.

Jordan, D. S., Russell, D. M., Jensen, A.-M. S., and Rogers, R. A. (1989). Facili-
tating the development of representations in hypertext with IDE. Proc. ACM
Hypertext'89 Conf. (Pittsburgh, PA, 5-8 November), 93-104.

Jorgensen, A. H. (1989). Using the thinking-aloud method in system develop-
ment. In Salvendy, G., and Smith, M. J. (Eds.), Designing and Using Human—
Computer Interfaces and Knowledge Based Systems. Elsevier Science Publishers,
Amsterdam. 743-750.

Jorgensen, A. H., and Sauer, A. (1990). The personal touch: A study of users’
customization practice. Proc. IFIP INTERACT'90 Third Intl. Conf. Human—
Computer Interaction (Cambridge, U.K., 27-31 August), 549-554.

K

Kacmar, C. J., and Carey, J. M. (1991). Assessing the usability of icons in user
interfaces. Behaviour & Information Technology 10, 6, 443-457.

Kain, H., and Nielsen, J. (1991). Estimating the market diffusion curve for
hypertext. Impact Assessment Bulletin 9, 1-2 (Spring), 145-157.

Karat, C. (1990). Cost-benefit analysis of iterative usability testing. Proc. IFIP
INTERACT'90 Third Intl. Conf. Human—Computer Interaction (Cambridge, U.K.,
27-31 August), 351-356.

320

Bibliography

Karat, C., and Karat, J. (Eds.) (1992). Some dialogue on scenarios. ACM
SIGCHI Bulletin 24, 4 (October), 7-17.

Karat, C., Campbell, R., and Fiegel, T. (1992). Comparison of empirical testing
and walkthrough methods in user interface evaluation. In Proc. ACM CHI'92
Conf. (Monterey, California, 3-7 May), 397-404.

Karat, J., and Bennett, J. L. (1990). Supporting effective and efficient design
meetings. Proc. IFIP INTERACT’90 Third Intl. Conf. on Human—Computer Inter-
action (Cambridge, U.K., 27-31 August), 365-370.

Karat, J., and Bennett, J. L. (1991a). Using scenarios in design meetings—A
case study example. In Karat, J. (Ed.), Taking Software Design Seriously: Practical
Techniques for Human—Computer Interaction Design. Academic Press, Boston,
MA. 63-94.

Karat, J.,, and Bennett, J. (1991b). Working within the design process—
Supporting effective and efficient design. In Carroll, J. M. (Ed.), Designing
Interaction: Psychology at the Human Computer Interface. Cambridge University
Press, Boston, MA. 269-285.

Karis, D., and Zeigler, B. L. (1989). Evaluation of mobile telecommunication
systems. Proc. Human Factors Society 33rd Annual Meeting, 205-209.

Karlin, J. E., and Klemmer, E. T. (1989). An interview. In Klemmer, E. T. (Ed.),
Ergonomics: Harness the Power of Human Factors in Your Business. Ablex,
Norwood, NJ. 197-201.

Kato, T. (1986). What ‘question-asking protocols” can say about the user inter-
face. Intl. |. Man—Machine Studies 25, 6 (December), 659—673.

Kay, A., and Goldberg, A. (1977). Personal dynamic media. IEEE Computer 10,
3 (March), 31-41.

Kay, R. H. (1989). A practical and theoretical approach to assessing computer
attitudes: The computer attitude measure (CAM). Journal on Research on
Computing in Education, 456—463.

Kearsley, G. (1988). Online Help Systems: Design and Implementation. Ablex,
Norwood, NJ.

Kellogg, W. A. (1987). Conceptual consistency in the user interface: Effects on
user performance. Proc. IFIP INTERACT’87 Second Intl. Conf. Human—Computer
Interaction (Stuttgart, Germany, 1-4 September), 389-394.

Kellogg, W. A. (1989). The dimensions of consistency. In Nielsen, J. (Ed.), Coor-
dinating User Interfaces for Consistency. Academic Press, Boston, MA. 9-20.

Kellogg, W. A. (1990). Qualitative artifact analysis. Proc. IFIP INTERACT’90
Third Intl. Conf. Human—Computer Interaction (Cambridge, U.K., 27-31 August),
193-198.

Kennedy, S. (1989). Using video in the BNR usability lab. ACM SIGCHI Bulletin
21, 2 (October), 92-95.

Kensing, F., and Munk-Madsen, A. (1993). PD: Structure in the toolbox.
Communications of the ACM 36, 4 (April), 78-85.

321

Usability Engineering

Kim, W. C., and Foley, J. D. (1990). DON: User interface presentation design
assistant. Proc. ACM UIST'90 Third Annual Symposium on User Interface Software
and Technology (Snowbird, UT, 3-5 October), 10-20.

Kincaid, J. P, Thomas, M., Strain, K., Couret, I, and Bryden, K. (1990).
Controlled English for international technical communication. Proc. Human
Factors Society 34th Annual Meeting, 815-819.

Klare, G. R. (1984). Readability. In Pearson, P. D. (Ed.), Handbook of Reading
Research. Longman, New York, NY. 681-744.

Kurlander, D., and Feiner, S. (1992). A history-based macro by example
system. Proc. ACM UIST’92 Symposium on User Interface Software and Technology
(Monterey, CA, 15-18 November), 99-106.

Kurtenbach, G., and Hulteen, E. A. (1990). Gestures in human-computer
communication. In Laurel, B. (Ed.), The Art of Human—Computer Interface
Design, Addison-Wesley, Reading, MA. 309-317.

L

LaLomia, M. J., and Sidowski, J. B. (1990). Measurements of computer satisfac-
tion, literacy, and aptitudes: A review. Intl.]. Human—-Computer Interaction 2, 3,
231-253.

LaLomia, M. J., and Sidowski, J. B. (1991). Measurements of computer atti-
tudes: A review. Intl. |. Human—Computer Interaction 3,2, 171-197.

Lamb, J. (1988). Computer crashes and stranded travellers—air traffic control
in Britain. New Scientist (8 September), 65.

Landauer, T. K. (1988a). Relations between cognitive psychology and
computer system design. In Carroll, J. M. (Ed.), Interfacing Thought: Cognitive
Aspects of Human—Computer Interaction. MIT Press, Cambridge, MA. 1-25.

Landauer, T. K. (1988b). Research methods in human—computer interaction. In
Helander, M. (Ed.), Handbook of Human—Computer Interaction. North-Holland,
Amsterdam, The Netherlands. 905-928.

Landauer, T. K. (1994). The Trouble with Computers: Usefulness, Usability and
Productivity. Book under preparation.

Landauer, T. K., and Nachbar, D. W. (1985). Selection from alphabetic and
numeric menu trees using a touch screen: Breadth, depth and width. Proc.
ACM CHI'85 Conf. (San Francisco, CA, 14-18 April), 73-78.

Lederer, A. L., and Prasad, J. (1992). Nine management guidelines for better
cost estimating. Communications of the ACM 35, 2 (February), 51-59.

Lee, A. (1992). User support: Considerations, features, and issues. In Hartson,
H. R, and Hix, D. (Eds.), Advances in Human—Computer Interaction Vol. 3,
Ablex, Norwood, NJ. 184-228.

Lee, J. A. N., McCarthy, J., and Licklider, J. C. R. (1992). Time-sharing at MIT.
IEEE Annals of the History of Computing 14, 1, 13-32.

322

Bibliography

Lee, M. P, Darling, M. W. M., Peacock, D., and Jeffreys, S. (1990). Simulating
user interfaces with dBase III+. In Life, M. A., Narborough-Hall, C. S., and
Hamilton, W. 1. (Eds.), Simulation and the User Interface. Taylor & Francis,
London, U.K. 181-195.

LeFevre, J.-A., and Dixon, P. (1986). Do written instructions need examples?
Cognition and Instruction 3, 1, 1-30.

Lehmann, E. L., and D’Abrera, H.’]. M. (1975). Nonparametrics: Statistical
Methods Based on Ranks. Holden-Day Inc., San Francisco, CA.

Lewis, C. (1982). Using the ‘thinking-aloud” method in cognitive interface
design. Research Report RC9265, IBM T.]J. Watson Research Center, Yorktown
Heights, NYY.

Lewis, C., Hair, D., and Schoenberg, V. (1989). Generalization, consistency, and
control. Proc. ACM CHI'89 Conf. (Austin, TX, 30 April-4 May), 1-5.

Lewis, C., Polson, P., Wharton, C., and Rieman, J. (1990). Testing a walk-
through methodology for theory-based design of walk-up-and-use interfaces.
Proc. ACM CHI'90 Conf. (Seattle, WA, 1-5 April), 235-241.

Lewis, J. R. (1992). Psychometric evaluation of the post-study system usability
questionnaire: The PSSUQ. Proc. Human Factors Society 36th Annual Meeting,
1259-1263.

Licklider, J. C. R. (1960). Man—computer symbiosis. IRE Trans. Human Factors in
Electronics 1, 1 (March), 4-11.

Life, M. A., Narborough-Hall, C. S., and Hamilton, W. 1. (Eds.) (1990). Simula-
tion and the User Interface. Taylor & Francis, London, U.K.

Lindgaard, G. (1991). Impressions from HUSAT. CHISIG Newsletter
(Computer-Human Interaction Special Interest Group of the Ergonomics
Society of Australia) (August), 1-2.

Lindgaard, G., Chessari, J., and Thsen, E. (1987). Icons in telecommunications:
What makes pictorial information comprehensible to the user? Australian Tele-
communication Research 21,2, 17-29.

Lodding, K. N. (1983). Iconic interfacing. IEEE Computer Graphics and Applica-
tions 3, 2 (March-April), 11-20.

Loshe, G., Walker, N., Biolsi, K., and Rueter, H. (1991). Classifying graphical
information. Behaviour & Information Technology 10, 5, 419-436.

Lowgren, J., and Nordgqvist, T. (1992). Knowledge-based evaluation as design
support for graphical user interfaces. Proc. ACM CHI'92 Conf. (Monterey, CA,
3-7 May), 181-188.

Lund, A. M. (1994). Ameritech’s usability laboratory: From prototype to final
design. Behaviour & Information Technology 13, 1&2 (January-April), 67-80.

Lunde, K. (1993). Understanding Japanese Information Processing. O'Reilly and
Associates, Inc.

323

Usability Engineering

M

Mack, R. L., and Burdett, J. M. (1992). When novices elicit knowledge: Ques-
tion-asking in designing, evaluating and learning to use software. In Hoffman,
R. (Ed.), The Psychology of Expertise: Cognitive Research and Empirical AL
Springer-Verlag, New York, NY. 245-268.

Mack, R. L., and Nielsen, J. (1987). Software integration in the professional
work environment: Observations on requirements, usage, and interface issues.
Research Report RC12677, IBM T. J. Watson Research Center, Yorktown Heights,
NY.

Mack, R. L., and Nielsen, J. (1993). Usability inspection methods. ACM SIGCHI
Bulletin 25, 1 (January), 28-33.

Mack, R. L., Lewis, C. H., and Carroll, J. M. (1983). Learning to use word
processors: Problems and prospects. ACM Trans. Office Information Systems 1, 3
(July), 254-271.

Mackay, W. E., and Tatar, D. G. (1989). Introduction to this special issue on
video as a research and design tool. ACM SIGCHI Bulletin 21, 2 (October), 48—
50.

Mackinlay, J. (1988). Applying a theory of graphical presentation to the
graphic design of user interfaces. Proc. ACM UIST'88 First Symposium User
Interface Software and Technology (Banff, Canada, 17-19 October), 179-189.

MacLean, A., Young, R. M., and Moran, T. P. (1989). Design rationale: The
argument behind the artifact. Proc. ACM CHI'89 Conf. (Austin, TX, 30 April-4
May), 247-252.

MacLean, A., Bellotti, V., Young, R. M., and Moran, T. P. (1991a). Reaching
through analogy: A design rationale perspective. Proc. ACM CHI'91 Conf.
(New Orleans, LA, 28 April-2 May), 167-172.

MacLean, A., Bellotti, V., and Moran, T. P. (1991b). Questions, options, and
criteria: Elements of design space analysis. Human—Computer Interaction 6, 3
and 4, 201-250.

Magyar, R. L. (1990). Assessing the icon appropriateness and icon discrim-
inability with a paired-comparison testing procedure. Proc. Human Factors
Society 34th Annual Meeting, 1204-1208.

Mahajan, V., Muller, E., and Srivastava, R. K. (1990). Determination of adopter
categories by using innovation diffusion models. Journal of Marketing Research
27,1 (February), 37-50.

Mantei, M. M. (1989). An HCI continuing education curriculum for industry.
ACM SIGCHI Bulletin 20, 3 (January), 16-18.

Mantei, M. M. (1990). The Strauss mouse (videotape). SIGGRAPH Video Review
56, Association for Computing Machinery, New York, NY.

Mantei, M. M., and Teorey, T. J. (1988). Cost/benefit analysis for incorporating
human factors in the software lifecycle. Communications of the ACM 31, 4
(April), 428-439.

324

Bibliography

Mantei, M. M., Hewett, T., Eason, K., and Preece, J. (1991). Report on the
INTERACT’90 workshop on education in HCI: Transcending disciplinary and
national boundaries. Interacting with Computers 3, 2, 232-240.

Marchionini, G. (1989). Making the transition from print to electronic encyclo-
pedia: Adaptation of mental models. Intl.]. Man—-Machine Studies 30, 6 (June),
591-618.

Marcus, A. (1992). Graphic Design for Electronic Documents and User Interfaces.
Addison-Wesley, Reading, MA.

Margono, S., and Shneiderman, B. (1987). A study of file manipulation by
novices using commands vs. direct manipulation. Proc. ACM D.C. Chapter 6th
Annual Technical Symposium (Washington, DC, 11 June).

Marshall, C., Nelson, C., and Gardiner, M. M. (1987). Design guidelines. In
Gardiner, M. M., and Christie, B. (Eds.), Applying Cognitive Psychology to User-
Interface Design. John Wiley & Sons, Chichester, U.K. 221-278.

Maulsby, D., Greenberg, S., and Mander, R. (1993). Prototyping an intelligent
agent through Wizard of Oz. Proc. ACM INTERCHI'93 Conf. (Amsterdam, The
Netherlands, 24-29 April), 277-284.

Mayes, J. T., Draper, S. W., McGregor, A. M., and Oatley, K. (1988). Information
flow in a user interface: The effect of experience and context on the recall of
MacWrite screens. In Jones, D. M., and Winder, R. (Eds.), People and Computers
IV. Cambridge University Press, Cambridge, U.K. 275-289.

Mayhew, D. J. (1992). Principles and Guidelines in Software User Interface Design.
Prentice Hall, Englewood Cliffs, NJ.

McClelland, I. L., and Brigham, E. R. (1990). Marketing ergonomics—how
should ergonomics be packaged? Ergonomics 33, 5, 519-526.

McCrobie, D. (1989). Human factors design considerations for military trains.
Proc. Human Factors Society 33rd Annual Meeting, 536-540.

McDonald, J. E., and Schvaneveldt, R. W. (1988). The application of user
knowledge to interface design. In Guindon, R. (Ed.), Cognitive Science and its
Applications for Human—Computer Interaction, Lawrence Erlbaum Associates,
Hillsdale, NJ. 289-338.

McDonald, J. E., Molander, M. E., and Noel, R. W. (1988). Color-coding catego-
ries in menus. Proc. ACM CHI'88 Conf. (Washington, DC, 15-19 May), 101-106.

Mercurio, P. J., and Erickson, T. D. (1990). Interactive scientific visualization:
An assessment of a virtual reality system. Proc. INTERACT’90 Third IFIP
Conference Human—Computer Interaction (Cambridge, U.K., 27-31 August), 741-
745.

Merwin, D. H., Dyre, B. P., Humphrey, D. G., Grimes, J., and Larish,]. E. (1990).
The impact of icons and visual effects on learning computer databases. Proc.
Human Factors Society 34th Annual Meeting (Orlando, FL, 8-12 October), 424~
428.

325

Usability Engineering

Miller, R. B. (1968). Response time in man—computer conversational transac-
tions. Proc. AFIPS Spring Joint Computer Conference Vol. 33, 267-277.

Mirel, B. (1991). Critical review of experimental research on the usability of
hard copy documentation. IEEE Trans. Professional Communication 34, 2 (June),
109-122.

Molich, R., and Nielsen, J. (1990). Improving a human—computer dialogue.
Communications of the ACM 33, 3 (March), 338-348.

Monk, A. (1986). Mode errors: A user-centered analysis and some preventative
measures using keying-contingent sounds. Intl.]. Man-Machine Studies 24, 4
(April), 313-327.

Monk, A. (1989). The personal browser: A tool for directed navigation in
hypertext systems. Interacting with Computers 1, 2 (August), 190-196.

Monmonier, M. (1991). How to Lie with Maps. The University of Chicago Press,
Chicago, IL.

Moran, T. P, and Carroll, J. M. (Eds.) (1994). Design Rationale. Lawrence
Erlbaum Associates, Hillsdale, NJ.

Mosier, J. N., and Smith, S. L. (1986). Application of guidelines for designing
user interface software. Behaviour & Information Technology 5, 1 (January—
March), 39-46.

Mrazek, D., and Rafeld, M. (1992). Integrating human factors on a large scale:
‘Product usability champions.” Proc. ACM CHI'92 Conf. (Monterey, CA, 3-7
May), 565-570.

Muller, M. J. (1991). PICTIVE—An exploration in participatory design. Proc.
ACM CHI'91 Conf. (New Orleans, La, 28 April-2 May), 225-231.

Muller, M. J. (1992). Retrospective on a year of participatory design using the
PICTIVE technique. Proc. ACM CHI'92 Conf. (Monterey, CA, 3-7 May), 455-
462.

Mulligan, R. M., Altom, M. W., and Simkin, D. K. (1991). User interface design
in the trenches: Some tips on shooting from the hips. Proc. ACM CHI'91 Conf.
(New Orleans, LA, 28 April-2 May), 232-236.

Mulligan, R. M., Dieli, M., Nielsen, J., Poltrock, S., Rosenberg, D., and
Rudman, S. E. (1992). Designing usable systems under real-world constraints:
A practitioners forum. Proc. ACM CHI'92 Conf. (Monterey, CA, 3-7 May), 149-
152

Mullins, P. M., and Treu, S. (1991). Measurement of stress to gauge user satis-
faction with features of the computer interface. Behaviour & Information Tech-
nology 10, 4 (July—August), 325-343.

Myers, B. A. (1985). The importance of percent-done progress indicators for
computer-human interfaces. Proc. ACM CHI'85 Conf. (San Francisco, CA, 14~
18 April), 11-17.

Myers, B. A. (1989). User-interface tools: Introduction and survey. IEEE Soft-
ware 6, 1 (January), 15-23.

326

Bibliography

Myers, B. A., and Rosson, M. B. (1992). Survey on user interface programming.
Proc. ACM CHI'92 Conf. (Monterey, CA, 3-7 May), 195-202.

Mynatt, E. D., and Edwards, W. K. (1992). Mapping GUIs to auditory inter-
faces. Proc. ACM UIST'92 Symposium on User Interface Software and Technology
(Monterey, CA, 15-18 November), 61-70.

N

Nagel, D. C. (1988). Human error in aviation operations. In Weiner, E. L., and
Nagel, D. C. (Eds.), Human Factors in Aviation. Academic Press, Boston, MA.
263-303.

Nardi, B. A., and Miller, J. R. (1991). Twinkling lights and nested loops: Distrib-
uted problem solving and spreadsheet development. Intl.]. Man—-Machine
Studies 34, 2 (February), 161-184.

Neal, A. S., and Simons, R. M. (1983). Playback: A method for evaluating the
usability of software and its documentation. Proc. ACM CHI'83 Conf. (Boston,
MA, 12-15 December), 78-82.

Neal, A. S., and Simons, R. M. (1984). Playback: A method for evaluating the
usability of software and its documentation. IBM Systems Journal 23, 1, 82-96.

Neumann, P. G. (1991). Inside RISKS: Putting on your best interface. Communi-
cations of the ACM 34, 3 (March), 138.

Newell, A. F. (1993). Interfaces for the ordinary and beyond. IEEE Software 10,
5 (September), 76-78.

Nicol, A. (1990). Interfaces for learning: What do good teachers know that we
don’t? In Laurel, B. (Ed.), The Art of Human—Computer Interface Design.
Addison-Wesley, Reading, MA. 113-122.

Nielsen, J. (1986). A virtual protocol model for computer-human interaction.
Intl. . Man—Machine Studies 24, 3, 301-312.

Nielsen, J. (1987a). Using scenarios to develop user friendly videotex systems.
Proc. NordDATA'87 Joint Scandinavian Computer Conference (Trondheim,
Norway, 15-18 June), 133-138.

Nielsen, J. (1987b). A user interface case study of the Macintosh. In Salvendy,
G. (Ed.), Cognitive Engineering in the Design of Human—Computer Interaction and
Expert Systems, Elsevier Science Publishers, Amsterdam. 241-248.

Nielsen, J. (1987c). Classification of dialog techniques. ACM SIGCHI Bulletin
19, 2 (October), 30-35.

Nielsen, J. (1989a). Prototyping user interfaces using an object-oriented hyper-
text programming system. Proc. NordDATA’89 Joint Scandinavian Computer
Conference (Copenhagen, Denmark, 19-22 June), 485-490.

Nielsen, J. (1989b). Usability engineering at a discount. In Salvendy, G., and
Smith, M. J. (Eds.), Designing and Using Human—Computer Interfaces and Knowl-
edge Based Systems. Elsevier Science Publishers, Amsterdam, The Netherlands.
394-401.

327

Usability Engineering

Nielsen, J. (1989c). Coordinating User Interfaces for Consistency. Academic Press,
Boston, MA.

Nielsen, J. (1989d). The matters that really matter for hypertext usability. Proc.
ACM Hypertext'89 Conf. (Pittsburgh, PA, 5-8 November), 239-248.

Nielsen, J. (1989e). What do users really want? Intl. |. Human—Computer Interac-
tion 1,2, 137-147.

Nielsen, J. (1990a). Hypertext and Hypermedia. Academic Press, Boston, MA.

Nielsen, J. (1990b). Big paybacks from ‘discount” usability engineering. IEEE
Software 7, 3 (May), 107-108.

Nielsen, J. (1990c). A meta-model for interacting with computers. Interacting
with Computers 2, 2 (August), 147-160.

Nielsen, J. (1990d). Paper versus computer implementations as mockup
scenarios for heuristic evaluation. Proc. IFIP INTERACT'90 Third Intl. Conf.
Human-Computer Interaction (Cambridge, U.K., 27-31 August), 315-320.

Nielsen, J. (1990e). Traditional dialogue design applied to modern user inter-
faces. Communications of the ACM 33, 10 (October), 109-118.

Nielsen, J. (1990f). Designing User Interfaces for International Use. Elsevier
Science Publishers, Amsterdam, The Netherlands.

Nielsen, J. (1990g). Miniatures versus icons as a visual cache for videotex
browsing. Behaviour & Information Technology 9, 6 (Nov.—Dec.), 441-449.

Nielsen, J. (1990h). International user interfaces: An exercise. ACM SIGCHI
Bulletin 21, 4 (April), 50-51.

Nielsen, J. (1990i). The art of navigating through hypertext. Communications of
the ACM 33, 3 (March), 296-310.

Nielsen, J. (1992a). Evaluating the thinking aloud technique for use by
computer scientists. In Hartson, H. R., and Hix, D. (Eds.), Advances in Human—
Computer Interaction Vol. 3, Ablex, Norwood, NJ. 69-82.

Nielsen, J. (1992b). The usability engineering life cycle. IEEE Computer 25, 3
(March), 12-22.

Nielsen, J. (1992c). Finding usability problems through heuristic evaluation.
Proc. ACM CHI'92 Conf. (Monterey, CA, 3-7 May), 373-380.

Nielsen, J. (1993a). Noncommand user interfaces. Communications of the ACM
36, 4 (April), 83-99.

Nielsen, J. (1993b). Iterative user interface design. IEEE Computer 26, 11
(November), 32—41.

Nielsen, J. (1994a). Usability laboratories. Behaviour & Information Technology
13, 1&2 (January-April), 3-8.

Nielsen, J. (1994b). Heuristic evaluation. In Nielsen, J., and Mack, R. L. (Eds.),
Usability Inspection Methods. John Wiley & Sons, New York, NY. 25-62.

328

Bibliography

Nielsen, J. (1994c). Guerrilla HCI: Using discount usability engineering to
penetrate the intimidation barrier. In Bias, R. G., and Mayhew, D. J. (Eds.),
Cost-Justifying Usability. Academic Press, Boston, MA.

Nielsen, J. (1994d). Enhancing the explanatory power of usability heuristics.
Proc. ACM CHI'94 Conf. (Boston, MA, April 24-28).

Nielsen, J., and Landauer, T. K. (1993). A mathematical model of the finding of
usability problems. Proc. ACM INTERCHI'93 Conf. (Amsterdam, The Nether-
lands, 24-29 April), 206-213.

Nielsen, J., and Levy, J. (1994). Measuring usability—preference vs. perfor-
mance. Communications of the ACM 37, 4 (April).

Nielsen, J., and Lyngbeek, U. (1990). Two field studies of hypermedia usability.
In McAleese, R., and Green, C. (Eds.), Hypertext: State of the Art. Ablex,
Norwood, NJ. 64-72.

Nielsen, J., and Mack, R. L. (1994). Usability Inspection Methods. John Wiley &
Sons, New York, NY.

Nielsen, J., and Molich, R. (1989). Teaching user interface design based on
usability engineering. ACM SIGCHI Bulletin 21, 1 (July), 45-48.

Nielsen, J., and Molich, R. (1990). Heuristic evaluation of user interfaces. Proc.
ACM CHI'90 Conf. (Seattle, WA, 1-5 April), 249-256.

Nielsen, J., and Phillips, V. L. (1993). Estimating the relative usability of two
interfaces: Heuristic, formal, and empirical methods compared. Proc. ACM
INTERCHI'93 Conf. (Amsterdam, The Netherlands, 24-29 April), 214-221.

Nielsen, J., and Richards, J. T. (1989). The experience of learning and using
Smalltalk. IEEE Software 6, 3 (May), 73-77.

Nielsen, J., and Schaefer, L. (1993). Sound effects as an interface element for
older users. Behaviour & Information Technology 12, 4 (July—August), 208-215.

Nielsen, J., Mack, R. L., Bergendorff, K. H., and Grischkowsky, N. L. (1986).
Integrated software in the professional work environment: Evidence from
questionnaires and interviews. Proc. ACM CHI'86 Conf. (Boston, MA, 13-17
April), 162-167.

Nielsen, J., Frehr, 1., and Nymand, H. O. (1991). The learnability of HyperCard
as an object-oriented programming system. Behaviour & Information Technology
10, 2 (March-April), 111-120.

Nielsen, J., Bush, R. M., Dayton, T., Mond, N. E., Muller, M. ., and Root, R. W.
(1992). Teaching experienced developers to design graphical user interfaces.
Proc. ACM CHI'92 Conf. (Monterey, CA, 3-7 May), 557-564.

Nielsen, J., Desurvire, H., Kerr, R., Rosenberg, D., Salomon, G., Molich, R., and
Stewart, T. (1993). Comparative design review: An exercise in parallel design.
Proc. ACM INTERCHI'93 Conf. (Amsterdam, The Netherlands, 24-29 April),
414-417.

329

Usability Engineering

Nielsen, J., Fernandes, T., Wagner, A., Wolf, R., and Ehrlich, K. (1994). Diversi-
fied parallel design: Contrasting design aproaches. ACM CHI'94 Conference
Companion (Boston, MA, April 24-28).

Nolan, P. R. (1989). Designing screen icons: Ranking and matching studies.
Proc. Human Factors Society 33rd Annual Meeting, 380-384.

Nolan, P. R. (1991). The design of keyboard templates. Proc. Human Factors
Society 35th Annual Meeting, 486—490.

Norman, D. A. (1983). Design rules based on analyses of human error. Commu-
nications of the ACM 26, 4 (April), 254-258.

Nussbaum, B., and Neff, R. (1991). I can’t work this thing. Business Week (29
April), 58-66.

Nyce, J. M., and Kahn, P. (Eds.) (1991). From Memex to Hypertext: Vannevar Bush
and the Mind'’s Machine. Academic Press, Boston, MA.

Nygren, E., Lind, M., Johnson, M., and Sandblad, B. (1992). The art of the
obvious. Proc. ACM CHI'92 Conf. (Monterey, CA, 3-7 May), 235-239.

(0]

O’Donnell, P. J., Scobie, G., and Baxter, I. (1991). The use of focus groups as an
evaluation technique in HCL. In Diaper, D., and Hammond, N. (Eds.), People
and Computers VI. Cambridge University Press, Cambridge, U.K. 211-224.

Olsen, D. R. (1990). Propositional production systems for dialog description.
Proc. ACM CHI'90 Conf. (Seattle, WA, 1-5 April), 57-63.

Olsen, D. R. (1991). User Interface Management Systems: Models and Algorithms.
Morgan Kaufmann Publishers, San Mateo, CA.

Olsen, D. R. (1992). Bookmarks: An enhanced scroll bar. ACM Trans. Graphics
11, 3 (July), 291-295.

Olsen, D. R., and Halversen, B. W. (1988). Interface usage measurements in a
user interface management system. Proc. ACM UIST’88 First Symposium User
Interface Software and Technology (Banff, Canada, 17-19 October), 102-108.

Olson, J. R., and Nilsen, E. (1987-88). Analysis of the cognition involved in
spreadsheet software interaction. Human—Computer Interaction 3, 4, 309-349.

Olson, J. R., and Olson, G. M. (1990). The growth of cognitive modeling in
human—computer interaction since GOMS. Human-Computer Interaction 5, 2
and 3, 221-265.

O'Malley, C. E., Draper, S. W., and Riley, M. S. (1984). Constructive interaction:
A method for studying human-computer-human interaction. Proc. IFIP
INTERACT'84 First Intl. Conf. Human—Computer Interaction (London, UK., 4-7
September), 269-274.

330

Bibliography

P

Paap, K. R., and Roske-Hofstrand, R. J. (1988). Design of menus. In Helander,
M. (Ed.), Handbook of Human—-Computer Interaction. North-Holland,
Amsterdam. 205-235.

Pausch, R. (1991). Virtual reality on five dollars a day. In Proc. ACM CHI'91
Conf. (New Orleans, LA, 28 April-2 May), 265-270.

Payne, S. J., and Green, T. R. G. (1986). Task-action grammars: A model of the
mental representation of task languages. Human—-Computer Interaction 2, 2, 93—
133.

Payne, S. J., and Green, T. R. G. (1989). The structure of command languages:
An experiment on task-action grammar. Intl. |. Man—Machine Studies 30, 2, 213—
234.

Pedhazur, E. J., and Schmelkin, L. P. (1991). Measurement, Design, and Analysis:
An Integrated Approach. Lawrence Erlbaum Associates, Hillsdale, NJ.

Perlman, G. (1988). Teaching user interface development to software engi-
neers. Proc. Human Factors Society 32nd Annual Meeting, 391-394.

Perlman, G. (1989). Coordinating consistency of user interfaces, code, online
help, and documentation with multilingual/multitarget software specifica-
tion. In Nielsen, J. (Ed.), Coordinating User Interfaces for Consistency, Academic
Press, Boston, MA. 35-55.

Perlman, G. (1990). Teaching user-interface development. IEEE Software 7, 6
(November), 85-86.

Perlman, G. (1991). The HCI bibliography project, ACM SIGCHI Bulletin 23, 3
(July), 15-20.

Perratore, E., Thompson, T., Udell, J., and Malloy, R. (1993). Fighting fatware.
BYTE 18, 4 (April), 98-108.

Perry, T. S., and Voelcker, J. (1989). Of mice and menus: Designing the user-
friendly interface. IEEE Spectrum 29, 9 (September), 46-51.

Peterson, J. L. (1980). Computer programs for detecting and correcting
spelling errors. Communications of the ACM 23, 12 (December), 676—687.

Polson, P. G. (1988). The consequences of consistent and inconsistent user
interfaces. In Guindon, R. (Ed.), Cognitive Science and its Applications for
Human—Computer Interaction, Lawrence Erlbaum Associates, Hillsdale, NJ. 59—
108.

Polson, P. G., Muncher, E., and Engelbeck, G. (1986). A test of a common
elements theory of transfer. Proc. ACM CHI'86 Conf. (Boston, MA, 13-17 April),
78-83.

Poltrock, S. E. (1994). Participant-observer studies of user interface design and
development. In Rudisill, M., McKay, T., Lewis, C., and Polson, P. (Eds.),
Human—Computer Interface Design: Success Cases, Emerging Methods, and Real-
World Context, Morgan Kaufmann Publishers, San Francisco, CA.

331

Usability Engineering

Potosnak, K. M., Hayes, P. J., Rosson, M. B., Schneider, M. L., and Whiteside, J.
A. (1986). Classifying users: A hard look at some controversial issues. Proc.
ACM CHI'86 Conf. (Boston, MA, 13-17 April), 84-88.

Potter, S. S., Cook, R. L., Woods, D. D., and McDonald, J. S. (1990). The role of
human factors guidelines in designing usable systems: A case study of oper-
ating room equipment. Proc. Human Factors Society 34th Annual Meeting
(Orlando, FL, 8-12 October), 392-395.

Preece, J., and Keller, L. S. (1990). Why, what and how? Issues in the develop-
ment of an HCI training course. Proc. IFIP INTERACT'90 Third Intl. Conf.
Human—Computer Interaction (Cambridge, U.K., 27-31 August), 3-7.

Preece, J., and Keller, L. S. (1991). Teaching the practitioners: Developing a
distance learning postgraduate HCI course. Interacting with Computers 3,1, 92—
118.

R

Ramsey, H. R., and Grimes, J. D. (1983). Human factors in interactive computer
dialog. In Williams, M. E. (Ed.), Annual Review of Information Science and Tech-
nology 18, American Society for Information Science, 29-59.

Rappaport, A. S., and Halevi, S. (1991). The computerless computer company.
Harvard Business Review 69, 4 (July-August), 69-80.

Rasmussen, J. (1983). Skills, rules, and knowledge: Signals, signs, and symbols,
and other distinctions in human performance models. IEEE Trans. Systems,
Man, and Cybernetics 13, 3 (May /June), 257-266.

Rauterberg, M. (1992). An empirical comparison of menu-selection (CUI) and
desktop (GUI) computer programs carried out by beginners and experts.
Behaviour & Information Technology 11, 4 (July—August), 227-236.

Reason, J. (1990). Human Error. Cambridge University Press, Cambridge, U.K.

Reed, S. (1992). Who defines usability? You do! PC/Computing 5, 12
(December), 220-232.

Reisner, P. (1981). Formal grammar and human factors design of an interactive
graphics system. IEEE Trans. Software Engineering SE-7, 2, 229-240.

Reisner, P. (1990). What is inconsistency? Proc. IFIP INTERACT90 Third Intl.
Conf. Human—Computer Interaction (Cambridge, U.K., 27-31 August), 175-181.

Reitman, P. (1988). Streamlining your documentation using quick references.
IEEE Trans. Professional Communication 31, 2 (June), 75-83.

Rettig, M. (1991). Nobody reads documentation. Communications of the ACM
34,7 (July), 19-24.

Rheingold, H. (1985). Tools for Thought: The People and Ideas Behind the Next
Computer Revolution. Simon and Schuster, New York, NY.

Rheingold, H. (1991). Virtual Reality. Summit Books, NY.

332

Bibliography

Rhyne, J. R., and Wolf, C. G. (1993). Recognition-based user interfaces. In
Hartson, H. R., and Hix, D. (Eds.), Advances in Human—Computer Interaction Vol.
4. Ablex, Norwood, NJ. 191-250.

Rice, J. F. (1991). Display color coding: 10 rules of thumb. IEEE Software 8, 1
(January), 86-88.

Rideout, T. (1991). Changing your methods from the inside. IEEE Software 8, 3
(May), 99-100, 111.

Roach, J. W., and Nickson, M. (1983). Formal specifications for modeling and
developing human/computer interfaces. Proc. ACM CHI'83 Conf. (Boston,
MA, 12-15 December), 35-39.

Robertson, G. G., Card, S. K., and Mackinlay, J. D. (1993). Information visual-
ization using 3D interactive animation. Communications of the ACM 36, 4
(April), 57-71.

Rock, I., and Palmer, S. (1990). The legacy of gestalt psychology. Scientific
American 263, 6 (December), 84-90.

Rogers, Y. (1986). Evaluating the meaningfulness of icon sets to represent
command operations. In Harrison, M. D., and Monk, A. F. (Eds.), People and
Computers: Designing for Usability. Cambridge University Press, Cambridge,
U.K. 586-603.

Rogers, Y. (1989). Icons at the interface: Their usefulness. Interacting with
Computers 1,1 (April), 105-117.

Root, R. W., and Draper, S. (1983). Questionnaires as a software evaluation
tool. Proc. ACM CHI'83 Conf. (Boston, MA, 12-15 December), 83-87.

Rosenberg, D. (1989). A cost benefit analysis for corporate user interface stan-
dards: What price to pay for a consistent ‘look and feel’? In Nielsen, J. (Ed.),
Coordinating User Interfaces for Consistency. Academic Press, Boston, MA. 21-34.

Rosenberg, J. K., and Moran, T. P. (1984). Generic commands. In Proc.
INTERACT'84 First IFIP Conf. Human—Computer Interaction (London, U.K., 4-7
September), 245-249.

Rosson, M. B. (1984). Effects of experience on learning, using, and evaluating a
text-editor. Human Factors 26, 4 (August), 463—475.

Rowley, D. E., and Rhoades, D. G. (1992). The cognitive jogthrough: A fast-
paced user interface evaluation procedure. Proc. ACM CHI'92 Conf. (Monterey,
CA, 3-7 May), 389-395.

Russo, P., and Boor, S. (1993). How fluent is your interface? Designing for
international users. Proc. ACM INTERCHI'93 Conf. (Amsterdam, The Nether-
lands, 24-29 April), 342-347.

S

Salasoo, A. (1990). Towards usable icon sets: A case study from telecommuni-
cations engineering. Proc. Human Factors Society 34th Annual Meeting, 203-207.

333

Usability Engineering

Sandewall, E. (1978). Programming in the interactive environment: The LISP
experience. ACM Computing Surveys 10, 1 (March), 35-71.

Sassone, P. G. (1987). Cost-benefit methodology for office systems. ACM Trans.
Office Information Systems 5, 3 (July), 273-289.

Schiele, F.,, and Green, T. (1990). HCI formalisms and cognitive psychology:
The case of task—action grammar. In Harrison, M., and Thimbleby, H. (Eds.),
Formal Methods in Human—Computer Interaction. Cambridge University Press,
Cambridge, U.K. 9-62.

Schleifer, L. M. (1990). System response time and method of pay: Cardiovas-
cular stress effects in computer-based tasks. Ergonomics 33, 1495-1509.

Schmidt, K. (1988). Functional analysis instrument. In Schaefer, G.,
Hirschheim, R., Harper, M., Hansjee, R., Domke, M., and Bjern-Andersen, N.
(Eds.), Functional Analysis of Office Requirements: A Multiperspective Approach.
Wiley, Chichester, U.K. 261-289.

Schrier, J. R. (1992). Reducing stress associated with participating in a usability
test. Proc. Human Factors Society 36th Annual Meeting, 1210-1214.

Sculley, J. (1992). Interview. Forbes ASAP Magazine (December 7), 93-100.

Sein, M. K., and Bostrom, R. P. (1989). Individual differences and conceptual
models in training novice users. Human—Computer Interaction 4, 3, 197-229.

Seligmann, D. D., and Feiner, S. (1991). Automated generation of intent-based
3D illustrations. Proc. ACM SIGGRAPH'91 Conf. (Las Vegas, NV, 28 July-2
August), 123-132.

Sellen, A., and Nicol, A. (1990). Building user-centered online help. In Laurel,
B. (Ed.), The Art of Human-Computer Interface Design, Addison-Wesley,
Reading, MA. 143-153.

Sellen, A.J., Kurtenbach, G. P., and Buxton, W. A. S. (1990). The role of visual
and kinesthetic feedback in the prevention of mode errors. Proc. IFIP
INTERACT’90 Third Intl. Conf. Human—Computer Interaction (Cambridge, U.K.,
27-31 August), 667-673.

Senay, H., and Stabler, E. P. (1987). Online help system usage: An empirical
investigation. Abridged Proceedings 2nd Intl. Conf. Human—Computer Interaction
(Honolulu, HI, 10-14 August), 244.

Senders, J. W., and Moray, N. P. (1991). Human Error: Cause, Prediction, and
Reduction. Erlbaum, Hillsdale, NJ.

Shackel, B. (1971). Human factors in the P.L.A. meat handling automation
scheme. A case study and some conclusions. Intl. J. Prod. Res. 9, 1, 95-121.

Shackel, B. (1991). Usability—Context, framework, definition, design and eval-
uation. In Shackel, B., and Richardson, S. (Eds.), Human Factors for Informatics
Usability. Cambridge University Press, Cambridge, U.K. 21-37.

Shackel, B., Alty, J. L., and Reid, P. (1992) HILITES—The information service
for the world HCI community. ACM SIGCHI Bulletin 24, 3 (July), 40-49.

334

Bibliography

Sheldon, K. M. (1991). ASCII goes global. BYTE 16, 7 (July), 108-116.

Shneiderman, B. (1982). Designing computer system messages. Communica-
tions of the ACM 25, 9 (September), 610-611.

Shneiderman, B. (1983). Direct manipulation: A step beyond programming
languages. IEEE Computer 16, 8 (August), 57-69.

Shneiderman, B. (1991). A taxonomy and rule base for the selection of interac-
tion styles. In Shackel, B., and Richardson, S. (Eds.), Human Factors for Infor-
matics Usability. Cambridge University Press, Cambridge, U.K. 325-342.

Shneiderman, B. (1993). Beyond intelligent machines: Just do it! IEEE Software
10, 1 (January), 100-103.

Silverstein, L. D. (1987). Human factors for color display systems: Concepts,
methods, and research. In Durrett, H. J. (Ed.), Color and the Computer, Academic
Press, Boston, MA. 27-61.

Simonelli, N. M. (1989). Product design and human factors diversity: What
you see is where you came from. In Klemmer, E. T. (Ed.), Ergonomics: Harness
the Power of Human Factors in Your Business. Ablex, Norwood, NJ. 88-122.

Siochi, A. C., and Ehrich, R. W. (1991). Computer analysis of user interfaces
based on repetition in transcripts of user sessions. ACM Trans. Information
Systems 9, 4 (October), 309-335.

Sless, D. (1991). Designing a new bill for Telecom Australia. [nformation Design
Journal 6, 3, 255-257.

Smith, S. L., and Mosier,]. N. (1986). Design Guidelines for Designing User Inter-
face Software. Technical Report MTR-10090, The MITRE Corporation, Bedford,
MA 01730, USA. See page 301 for information on downloading this report
over the network.

Smith, W. (1988). Standardizing colors for computer screens. Proc. Human
Factors Society’s 32nd Annual Meeting, 1381-1385.

Sendergaard, G. (1987). Oversigt over efternavne i Danmark (“Survey of family
names in Denmark”; in Danish), Nordic Institute, Odense University, Odense,
Denmark.

Springer, C. J. (1987). Retrieval of information from complex alphanumeric
displays: Screen formatting variables’ effect on target identification time. In
Salvendy, G. (Ed.), Cognitive Engineering in the Design of Human-Computer
Interaction and Expert Systems. Elsevier Science Publishers, Amsterdam, The
Netherlands. 375-382.

Sprung, R. C. (1990). Two faces of America: Polyglot and tongue-tied. In
Nielsen, J. (Ed.), Designing User Interfaces for International Use. Elsevier Science
Publishers, Amsterdam. 71-102.

Stammers, R. B., and Hoffman, J. (1991). Transfer between icon sets and ratings
of icon concreteness and appropriateness. Proc. Human Factors Society 35th
Annual Meeting, 354-258.

335

Usability Engineering

Steuer, J. (1992). Defining virtual reality: Dimensions determining telepres-
ence. Journal of Communication 42, 4 (Autumn), 73-93.

Stewart, T. (1990). SIOIS—Standard interfaces or interface standards. Proc. IFIP
INTERACT'90 Third Intl. Conf. Human—Computer Interaction (Cambridge, U.K.,
27-31 August), XXix—Xxxiv.

Stotts, P. D., and Furuta, R. (1989). Petri-net-based hypertext: Document struc-
ture with browsing semantics. ACM Transactions on Information Systems 7, 1
(January), 3-29.

Streeter, L. A., Ackroff,]. M., and Taylor, G. A. (1983). On abbreviating
command names. The Bell System Technical Journal 62, 1807-1828.

Strong, G. W. (1989). Introductory course in human computer interaction.
ACM SIGCHI Bulletin 20, 3 (January), 19-21.

Sukaviriya, P., and Foley, J. D. (1990). Coupling a UI framework with auto-
matic generation of context-sensitive animated help. Proc. ACM UIST'90 Third
Annual Symposium on User Interface Software and Technology (Snowbird, UT, 3-5
October), 21-30.

Sukaviriya, P., and Moran, L. (1990). User interface for Asia. In Nielsen, J.
(Ed.), Designing User Interfaces for International Use. Elsevier Science Publishers,
Amsterdam. 71-102.

Sutherland, I. E. (1963). Sketchpad: A man-machine graphical communication
system. Proc. AFIPS Spring Joint Computer Conference, 329-346.

T

Tanaka, T., Eberts, R. E., and Salvendy, G. (1990). Derivation and validation of
a quantitative method for the analysis of consistency for interface design. Proc.
Human Factors Society 34th Annual Meeting, 329-333.

Teasley, B., Leventhal, L., Blumenthal, B., Instone, K., and Stone, D. (1994).
Cultural diversity in user interface design: Are intuitions enough? ACM
SIGCHI Bulletin 26, 1 (January), 36—40.

Teitelman, W. (1972). Do what I mean: The programmer’s assistant. Computers
and Automation 21 (April), 8-11.

Teitelman, W. (1986). Ten years of window systems: A retrospective view. In
Hopgood, E. R. A., Duce, D. A,, Fielding, E. V. C., Robinson, K., and Williams,
A. S. (Eds.), Methodology of Window Management. Springer-Verlag, Berlin,
Germany. 35-46.

Telles, M. (1990). Updating an older interface. Proc. ACM CHI'90 Conf. (Seattle,
WA, 1-5 April), 243-247.

Tesler, L. (1981). The Smalltalk environment. BYTE 6, 8 (August), 90-147.

Tesler, L. G. (1991). Networked computing in the 1990s. Scientific American 265,
3 (September), 86-93.

336

Bibliography

Tetzlaff, L., and Schwartz, D. R. (1991). The use of guidelines in interface
design. Proc. ACM CHI'91 Conf. (New Orleans, LA, 28 April-2 May), 329-333.

Thomas, J. C., and Stuart, R. (1992). Virtual reality and human factors. Proc.
Human Factors Society 36th Annual Meeting, 207-210.

Thompson, D. A., McEvers, D. C., and Olson, C. H. (1986). Case study in data
entry system design. Proc. Human Factors Society 30th Annual Meeting, 744-748.

Thovtrup, H., and Nielsen, J. (1991). Assessing the usability of a user interface
standard. Proc. ACM CHI'91 Conf. (New Orleans, LA, 28 April-2 May), 335-
341.

Tognazzini, B. (1989). Achieving consistency for the Macintosh. In Nielsen, J.
(Ed.), Coordinating User Interfaces for Consistency, Academic Press, Boston, MA.
57-73.

Tognazzini, B. (1990). User testing on the cheap. Apple Direct 2, 6 (March), 21—
27. Also available as Chapter 14 of Tognazzini, B. (1992), Tog on Interface,
Addison-Wesley, Reading, MA.

Tombaugh, J., Lickorish, A., and Wright, P. (1987). Multi-window displays for
readers of lengthy texts. Intl.]. Man—-Machine Studies 26, 5 (May), 597-615.

Tousséa-Oulai, A., and Ura, S. (1991). Information technology transfer: Prob-
lems facing African developing nations. Intl. |. Human—Computer Interaction 3,
1,79-93.

Travis, D. (1991). Effective Color Displays: Theory and Practice. Academic Press,
London, U.K.

Tucker, P, and Jones, D. M. (1991). Voice as interface: An overview. Intl. |.
Human—Computer Interaction 3,2, 145-170.

Tullis, T. S. (1985). Designing a menu-based interface to an operating system.
Proc. ACM CHI'85 Conf. (San Francisco, CA, 14-18 April), 79-84.

\%

van der Veer, G. C., and White, T. N. (1990). University education on human-—
computer interaction—The Dutch situation. Proc. IFIP INTERACT'90 Third
Intl. Conf. Human—Computer Interaction (Cambridge, U.K., 27-31 August), 9-13.

van Nes, F. L., and van Itegem, J. P. M. (1990). Hidden functionality: How an
advanced car radio is really used. In IPO Annual Progress Report 25, Institute
for Perception Research, Eindhoven, The Netherlands. 101-112.

Vander Zanden, B., and Myers, B. A. (1990). Automatic, look-and-feel indepen-
dent dialog creation for graphical user interfaces. Proc. ACM CHI'90 Conf.
(Seattle, WA, 1-5 April), 27-34.

Vertelney, L. (1989). Using video to prototype user interfaces. ACM SIGCHI
Bulletin 21, 2 (October), 57-61.

337

Usability Engineering

Vincente, K. J., and Williges, R. C. (1988). Accommodating individual differ-
ences in searching a hierarchical file system. Intl. |. Man—Machine Studies 29, 6,
647-668.

Virzi, R. A. (1989). What can you learn from a low-fidelity prototype? Proc.
Human Factors Society 33rd Annual Meeting (Denver, CO, 16-20 October), 224—
228.

Virzi, R. A. (1991). A preference evaluation of three dialing plans for a residen-
tial, phone-based information service. Proc. Human Factors Society 35th Annual
Meeting (San Francisco, CA, 2-6 September).

Voltaire, F. M. A. (1764). Dictionnaire Philosophique. English translation
published in 1765 as Philosophical Dictionary.

von Hippel, E. (1988). The Sources of Innovation. Oxford University Press, New
York, NY.

w

Walker, J. H. (1987). Issues and strategies for online documentation. IEEE
Trans. Professional Communication 30, 4 (December), 235-248.

Want, R., Hopper, A., Falcao, V., and Gibbons, J. (1992). The active badge loca-
tion system. ACM Transactions on Information Systems 10, 1 (January), 91-102.

Wasserman, A. S. (1989). Redesigning Xerox: A design strategy based on oper-
ability. In Klemmer, E. T. (Ed.), Ergonomics: Harness the Power of Human Factors
in Your Business, Ablex, Norwood, NJ. 7-44.

Wastell, D. (1990). Mental effort and task performance: Towards a psycho-
physiology of human computer interaction. Proc. IFIP INTERACT'90 Third
Intl. Conf. Human—Computer Interaction (Cambridge, U.K., 27-31 August), 107-
112.

Weiler, P, Cordes, R., Hammontree, M., Hoiem, D., and Thompson, M. (1993).
Software for the usability lab: A sampling of current tools. Proc. ACM
INTERCHI'93 Conf. (Amsterdam, The Netherlands, 24-29 April), 57-60.

Wellner, P. D. (1989). Statemaster: A UIMS based on statecharts for prototyping
and target implementation. Proc. ACM CHI'89 Conf. (Austin, TX, 30 April4
May), 177-182.

Wharton, C., Bradford, J., Jeffries, R., and Franzke, M. (1992). Applying cogni-
tive walkthroughs to more complex user interfaces: Experiences, issues, and
recommendations. Proc. ACM CHI'92 Conf. (Monterey, CA, 3-7 May), 381-388.

Whitefield, A., Wilson, E, and Dowell, J. (1991). A framework for human
factors evaluation. Behaviour & Information Technology 10, 1 (January-
February), 65-79.

Whiteside, J., and Wixon, D. (1987). The dialectic of usability engineering. Proc.
IFIP INTERACT'87 Conf. (Stuttgart, Germany, 1-4 September), 17-20.

338

Bibliography

Whiteside, J., Jones, S., Levy, P. S., and Wixon, D. (1985). User performance
with command, menu, and iconic interfaces. Proc. ACM CHI'85 Conf. (San
Francisco, CA, 14-18 April), 185-191.

Whiteside, J., Bennett, J., and Holtzblatt, K. (1988). Usability engineering: Our
experience and evolution. In Helander, M. (Ed.), Handbook of Human—Computer
Interaction, North-Holland, Amsterdam. 791-817.

Wichansky, A. M., Abernethy, C. N., Antonelli, D. C., Kotsonis, M. E., and
Mitchell, P. P. (1988). Selling ease of use: Human factors partnerships with
marketing. Proc. Human Factors Society 32nd Annual Meeting, 598—602.

Wiecha, C., and Boies, S. J. (1990). Generating user interfaces: Principles and
use of ITS style rules. Proc. ACM UIST'90 Third Annual Symposium on User
Interface Software and Technology (Snowbird, UT, 3-5 October), 21-30.

Wiecha, C. and Henrion, M. (1987). Linking multiple program views using a
visual cache. Proc. IFIP INTERACT'87 Second Intl. Conf. Human—Computer Inter-
action (Stuttgart, Germany, 1-4 September), 689-694.

Wiecha, C., Bennett, W., Boies, S., and Gould, J. (1989). Tools for generating
consistent user interfaces. In Nielsen, J. (Ed.), Coordinating User Interfaces for
Consistency, Academic Press, Boston, MA. 107-130.

Wiggins, B. (1991). DTI Usability Now! programme. Talk presented at the
British Computer Society’s HCI'91 conference (Edinburgh, UK. 20-23
August).

Winograd, T. (1990). What can we teach about human—computer interaction.
Proc. ACM CHI'90 Conf. (Seattle, WA, 1-5 April), 443-449.

Wixon, D., and Jones, S. (1994). Usability for fun and profit: A case study of the
re-design of the VAX RALLY. In Rudisill, M., McKay, T., Lewis, C., and Polson,
P. (Eds.), Human—-Computer Interface Design: Success Cases, Emerging Methods,
and Real-World Context, Morgan Kaufmann Publishers, San Francisco, CA.

Wixon, D., Jones, S., Tse, L., and Casaday, G. (1994). Inspections and design
reviews: Framework, history, and reflection. In Nielsen, J., and Mack, R. L.
(Eds.), Usability Inspection Methods. John Wiley & Sons, New York, NY.

Wolf, R. (1989). Consistency as process. In Nielsen, J. (Ed.), Coordinating User
Interfaces for Consistency, Academic Press, Boston, MA. 89-92.

Wozny, L. A. (1989). The application of metaphor, analogy, and conceptual
models in computer systems. Interacting with Computers 1, 3, 273-283.

Wright, P. (1983). Manual dexterity: A user-oriented approach to creating
computer documentation. Proc. ACM CHI'83 Conf. (Boston, MA, 12-15
December), 11-18.

Wright, P. (1991). Designing and evaluating documentation for L.T. users. In
Shackel, B., and Richardson, S. (Eds.), Human Factors for Informatics Usability.
Cambridge University Press, Cambridge, U.K. 343-358.

Wright, P. C., and Monk, A. E. (1991). A cost-effective evaluation method for
use by designers. Intl.]. Man—Machine Studies 35, 6 (December), 891-912.

339

Usability Engineering

Wright, R. B., and Converse, S. A. (1992). Method bias and concurrent verbal
protocol in software usability testing. Proc. Human Factors Society 36th Annual
Meeting, 1220-1224.

Y

Yang, Y. (1990). Interface usability engineering under practical constraints: A
case study in the design of undo support. Proc. IFIP INTERACT'90 Third Intl.
Conf. Human—Computer Interaction (Cambridge, U.K., 27-31 August), 549-554.

Yang, Y. (1992). Motivation, practice, and guidelines for ‘undoing.” Interacting
with Computers 4, 1 (April), 23—-40.

Young, D., Lansdale, M. W., and Bass, C. A. (1990). Using HyperTalk as a spec-
ification tool and a simulation vehicle in the development of a personal data
base system. In Life, M. A., Narborough-Hall, C. S., and Hamilton, W. L. (Eds.),
Simulation and the User Interface. Taylor & Francis, London, U.K. 169-180.

Z

Ziegler,]. E., Hoppe, H. U., and Fahnrich, K. P. (1986). Learning and transfer
for text and graphics editing with a direct manipulation interface. Proc. ACM
CHI'86 Conf. (Boston, MA, 13-17 April), 72-77.

Zwaga, H. J. (1989). Comprehensibility estimates of public information
symbols: Their validity and use. Proc. Human Factors Society 33rd Annual
Meeting, 979-983.

340

	Page 1
	Titles
	Usability Engineering
	JAKOB NIELSEN
	Morgan Kaufmann

	Images
	Image 1

	Page 2
	Titles
	A Harcourt Science and Technology Company

	Page 3
	Titles
	Chapter 1
	Chapter 2
	Table of Contents
	What Is Usability? 23
	v

	Page 4
	Titles
	Chapter 3
	Chapter 4
	Chapter 5
	Generations of User Interfaces 49
	The Usability Engineering Lifecycle 71
	Usability Heuristics 115

	Page 5
	Titles
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Usability Testing 165
	Usability Assessment Methods beyond
	Interface Standards 227
	International User Interfaces 237

	Page 6
	Titles
	Chapter 10
	Appendix A
	Appendix B
	viii
	Future Developments 255
	Exercises 269
	Bibliography 283
	Author Index 341
	Subject Index 351

	Page 7
	Titles
	Preface
	Audience

	Page 8
	Page 9
	Titles
	Teaching Usability Engineering

	Page 10
	Page 11
	Titles
	Acknowledgments

	Page 12
	Page 13
	Titles
	Chapter 1
	Executive Summary

	Page 14
	Titles
	1.1 Cost Savings

	Page 15
	Page 16
	Page 17
	Page 18
	Tables
	Table 1

	Page 19
	Page 20
	Titles
	1.2 Usability Nowtl

	Page 21
	Page 22
	Titles
	1.3 Usability Slogans

	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Titles
	1.4 Discount Usability Engineering

	Page 30
	Page 31
	Page 32
	Page 33
	Titles
	1.5 Recipe For Action

	Page 34
	Images
	Image 1

	Page 35
	Titles
	Chapter 2
	What Is Usability?

	Page 36
	Titles
	2.1 Usability and Other

	Page 37
	Images
	Image 1

	Page 38
	Titles
	2.2 Definition of Usability

	Page 39
	Page 40
	Images
	Image 1

	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Images
	Image 1

	Page 49
	Titles
	2.3 Example: Measuring the Usability

	Page 50
	Page 51
	Page 52
	Page 53
	Titles
	2.4 Usability Trade-Offs

	Page 54
	Page 55
	Titles
	2.5 Categories of Users and

	Page 56
	Images
	Image 1
	Image 2

	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Titles
	Chapter 3
	Generations of User

	Images
	Image 1

	Page 62
	Titles
	Table 5 Summary of the generations of computers and user interfaces.
	m

	Tables
	Table 1

	Page 63
	Titles
	3.1 Batch Systems

	Page 64
	Titles
	3.2 Line-Oriented Interfaces

	Page 65
	Images
	Image 1

	Page 66
	Titles
	3.3 Full-Screen Interfaces

	Page 67
	Page 68
	Images
	Image 1
	Image 2
	Image 3

	Page 69
	Titles
	3.4 Graphical User Interfaces

	Page 70
	Images
	Image 1

	Page 71
	Page 72
	Images
	Image 1

	Page 73
	Images
	Image 1

	Page 74
	Titles
	-
	3.5 Next-Generation Interfaces

	Images
	Image 1

	Page 75
	Images
	Image 1

	Page 76
	Images
	Image 1

	Page 77
	Images
	Image 1
	Image 2

	Page 78
	Images
	Image 1

	Page 79
	Titles
	3.6 Long- Term Trends in Usability

	Images
	Image 1

	Page 80
	Images
	Image 1

	Page 81
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1

	Page 82
	Page 83
	Titles
	Chapter 4
	The Usability Engineering

	Images
	Image 1
	Image 2
	Image 3

	Page 84
	Page 85
	Titles
	4.1 Know the User

	Images
	Image 1

	Page 86
	Page 87
	Images
	Image 1
	Image 2
	Image 3

	Page 88
	Images
	Image 1

	Page 89
	Images
	Image 1
	Image 2

	Page 90
	Titles
	4.2 Competitive Analysis

	Page 91
	Titles
	4.3 Goal Setting

	Images
	Image 1
	Image 2

	Page 92
	Page 93
	Titles
	4.5
	t
	t
	a
	t
	Figure 7 An example of a usability goal line in a notation similar to that

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 94
	Images
	Image 1
	Image 2

	Page 95
	Page 96
	Images
	Image 1

	Page 97
	Titles
	4.4 Parallel Design

	Images
	Image 1

	Page 98
	Images
	Image 1
	Image 2

	Page 99
	Images
	Image 1

	Page 100
	Titles
	4.5 Participatory Design

	Images
	Image 1

	Page 101
	Page 102
	Titles
	4.6 Coordinating the Total Interface

	Images
	Image 1
	Image 2
	Image 3

	Page 103
	Titles
	4.7 Guidelines and Heuristic

	Images
	Image 1

	Page 104
	Images
	Image 1

	Page 105
	Titles
	4.8 Prototyping

	Images
	Image 1
	Image 2

	Page 106
	Titles
	Different features

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 107
	Page 108
	Images
	Image 1
	Image 2

	Page 109
	Images
	Image 1

	Page 110
	Images
	Image 1
	Image 2

	Page 111
	Images
	Image 1

	Page 112
	Images
	Image 1
	Image 2
	Image 3

	Page 113
	Images
	Image 1

	Page 114
	Titles
	4.9 Interface Evaluation

	Images
	Image 1

	Page 115
	Images
	Image 1

	Page 116
	Images
	Image 1
	Image 2

	Page 117
	Titles
	4.10 Iterative Design

	Images
	Image 1
	Image 2

	Page 118
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 119
	Page 120
	Images
	Image 1
	Image 2

	Page 121
	Titles
	4.11 Follow-Up Studies of Installed

	Images
	Image 1
	Image 2
	Image 3

	Page 122
	Images
	Image 1
	Image 2

	Page 123
	Titles
	4.12 Meta-Methods

	Images
	Image 1
	Image 2

	Page 124
	Titles
	4.13 Prioritizing Usability Activities

	Images
	Image 1
	Image 2
	Image 3

	Page 125
	Titles
	4.14 Be Prepared

	Images
	Image 1

	Page 126
	Images
	Image 1

	Page 127
	Titles
	Chapter 5
	Usability Heuristics
	5.1 Simple and Natural Dialogue

	Images
	Image 1
	Image 2

	Page 128
	Images
	Image 1
	Image 2
	Image 3

	Page 129
	Images
	Image 1

	Page 130
	Titles
	:gl~~~1

	Images
	Image 1

	Page 131
	Images
	Image 1

	Page 132
	Images
	Image 1

	Page 133
	Images
	Image 1

	Page 134
	Page 135
	Titles
	5.2 Speak the Users' Language

	Images
	Image 1

	Page 136
	Images
	Image 1
	Image 2
	Image 3

	Page 137
	Images
	Image 1

	Page 138
	Images
	Image 1
	Image 2

	Page 139
	Images
	Image 1

	Page 140
	Images
	Image 1
	Image 2

	Page 141
	Titles
	5.3 Minimize User Memory Load

	Images
	Image 1

	Page 142
	Images
	Image 1
	Image 2

	Page 143
	Titles
	+.&
	"PASTE"

	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1

	Page 144
	Titles
	5.4 Consistency

	Page 145
	Images
	Image 1
	Image 2

	Page 146
	Titles
	5.5 Feedback

	Images
	Image 1

	Page 147
	Images
	Image 1
	Image 2
	Image 3

	Page 148
	Images
	Image 1
	Image 2

	Page 149
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 150
	Titles
	5.6 Clearly Marked Exits

	Images
	Image 1
	Image 2
	Image 3

	Page 151
	Titles
	5.7 Shortcuts

	Images
	Image 1
	Image 2
	Image 3

	Page 152
	Images
	Image 1
	Image 2

	Page 153
	Images
	Image 1
	Image 2

	Page 154
	Titles
	5.8 Good Error Messages

	Images
	Image 1
	Image 2
	Image 3

	Page 155
	Images
	Image 1
	Image 2
	Image 3

	Page 156
	Images
	Image 1
	Image 2

	Page 157
	Titles
	5.9 Prevent Errors

	Images
	Image 1
	Image 2

	Page 158
	Page 159
	Images
	Image 1
	Image 2

	Page 160
	Titles
	5.10 Help and Documentation

	Images
	Image 1
	Image 2
	Image 3

	Page 161
	Images
	Image 1

	Page 162
	Images
	Image 1

	Page 163
	Page 164
	Images
	Image 1
	Image 2

	Page 165
	Images
	Image 1

	Page 166
	Titles
	Calculating a formula

	Images
	Image 1

	Page 167
	Titles
	5.11 Heuristic Evaluation

	Images
	Image 1

	Page 168
	Titles
	J:
	2
	::5
	.•..
	g-
	O: 0%
	o

	Images
	Image 1

	Page 169
	Images
	Image 1

	Page 170
	Images
	Image 1

	Page 171
	Images
	Image 1

	Page 172
	Page 173
	Page 174
	Images
	Image 1
	Image 2
	Image 3

	Page 175
	Page 176
	Images
	Image 1

	Page 177
	Titles
	Chapter 6
	Usability Testing

	Page 178
	Images
	Image 1
	Image 2

	Page 179
	Page 180
	Titles
	a5~ 30%

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 181
	Images
	Image 1
	Image 2
	Image 3

	Page 182
	Titles
	6.1 Test Goals and Test Plans
	Test Plans

	Images
	Image 1
	Image 2
	Image 3

	Page 183
	Page 184
	Images
	Image 1

	Page 185
	Images
	Image 1

	Page 186
	Titles
	12
	o
	.•...
	.8 50
	~
	~
	75
	Number of Test Users
	Pilot Tests

	Images
	Image 1
	Image 2
	Image 3

	Page 187
	Titles
	6.2 Getting Test Users

	Images
	Image 1

	Page 188
	Images
	Image 1

	Page 189
	Images
	Image 1

	Page 190
	Images
	Image 1

	Page 191
	Titles
	6.3 Choosing Experimenters

	Page 192
	Images
	Image 1

	Page 193
	Titles
	6.4 Ethical Aspects of Tests with

	Images
	Image 1
	Image 2

	Page 194
	Images
	Image 1
	Image 2
	Image 3

	Page 195
	Page 196
	Titles
	Table 9 Main ethical considerations for user testing.

	Images
	Image 1

	Page 197
	Titles
	6.5 Test Tasks

	Images
	Image 1

	Page 198
	Images
	Image 1

	Page 199
	Titles
	6.6 Stages of a Test

	Page 200
	Images
	Image 1
	Image 2
	Image 3

	Page 201
	Images
	Image 1

	Page 202
	Images
	Image 1
	Image 2

	Page 203
	Page 204
	Titles
	6.7 Performance Measurement

	Images
	Image 1
	Image 2

	Page 205
	Page 206
	Images
	Image 1
	Image 2
	Image 3

	Page 207
	Titles
	6.8 Thinking Aloud

	Page 208
	Images
	Image 1

	Page 209
	Page 210
	Images
	Image 1
	Image 2

	Page 211
	Page 212
	Titles
	6.9 Usability Laboratories

	Images
	Image 1

	Page 213
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 214
	Images
	Image 1

	Page 215
	Page 216
	Images
	Image 1

	Page 217
	Page 218
	Images
	Image 1

	Page 219
	Titles
	Chapter 7
	Usability Assessment
	7.1 Observation

	Page 220
	Images
	Image 1

	Page 221
	Titles
	7.2 Questionnaires and Interviews

	Images
	Image 1

	Page 222
	Images
	Image 1

	Page 223
	Page 224
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 225
	Page 226
	Titles
	7.3 Focus Groups

	Images
	Image 1
	Image 2

	Page 227
	Images
	Image 1

	Page 228
	Images
	Image 1

	Page 229
	Titles
	7.4 Logging Actual Use

	Images
	Image 1
	Image 2

	Page 230
	Images
	Image 1

	Page 231
	Page 232
	Images
	Image 1
	Image 2

	Page 233
	Titles
	7.5 User Feedback

	Images
	Image 1
	Image 2

	Page 234
	Images
	Image 1
	Image 2
	Image 3

	Page 235
	Titles
	7.6 Choosing Usability Methods

	Page 236
	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 237
	Images
	Image 1

	Page 238
	Images
	Image 1

	Page 239
	Titles
	lnierjace Standards
	Chapter 8

	Images
	Image 1

	Page 240
	Images
	Image 1
	Image 2

	Page 241
	Page 242
	Images
	Image 1
	Image 2

	Page 243
	Titles
	8.1 National, International and

	Images
	Image 1
	Image 2

	Page 244
	Images
	Image 1
	Image 2

	Page 245
	Titles
	8.2 Producing Usable In-House

	Page 246
	Images
	Image 1
	Image 2

	Page 247
	Page 248
	Images
	Image 1
	Image 2
	Image 3

	Page 249
	Titles
	Chapter 9
	International User Interfaces

	Page 250
	Images
	Image 1
	Image 2
	Image 3

	Page 251
	Titles
	9.1 International Graphical Interfaces

	Page 252
	Images
	Image 1

	Page 253
	Titles
	I:8J Font Substitution?
	btl Font Substitution?
	241

	Page 254
	Titles
	9.2 International Usability

	Images
	Image 1

	Page 255
	Page 256
	Images
	Image 1

	Page 257
	Page 258
	Images
	Image 1

	Page 259
	Titles
	9.3 Guidelines for Internationalization

	Page 260
	Page 261
	Page 262
	Images
	Image 1

	Page 263
	Titles
	9.4 Resource Separation

	Images
	Image 1

	Page 264
	Images
	Image 1
	Image 2

	Page 265
	Titles
	9.5 Multilocale Interfaces

	Images
	Image 1

	Page 266
	Images
	Image 1
	Image 2

	Page 267
	Titles
	Chapter 10
	Future Developments

	Page 268
	Titles
	10.1 Theoretical Solutions

	Images
	Image 1
	Image 2

	Page 269
	Page 270
	Images
	Image 1

	Tables
	Table 1

	Page 271
	Page 272
	Titles
	10.2 Technological Solutions

	Images
	Image 1

	Page 273
	Page 274
	Images
	Image 1

	Page 275
	Images
	Image 1

	Page 276
	Titles
	10.3 CAUSE Tools: Computer-Aided

	Images
	Image 1

	Page 277
	Titles
	10.4 Technology Transfer

	Page 278
	Images
	Image 1

	Page 279
	Images
	Image 1

	Page 280
	Page 281
	Titles
	Exercises

	Page 282
	Images
	Image 1
	Image 2

	Page 283
	Page 284
	Images
	Image 1

	Page 285
	Images
	Image 1

	Page 286
	Images
	Image 1

	Page 287
	Page 288
	Titles
	Exercise 12: Individual Differences
	Exercise 13: International User Interfaces
	Hints

	Images
	Image 1
	Image 2

	Page 289
	Titles
	European Joint Ownersh ip Inform anon System

	Images
	Image 1

	Page 290
	Titles
	sa

	Images
	Image 1
	Image 2

	Page 291
	Titles
	6L.Z

	Images
	Image 1
	Image 2

	Page 292
	Titles
	08Z

	Images
	Image 1
	Image 2

	Page 293
	Titles
	IBZ

	Images
	Image 1

	Page 294
	Titles
	Z8Z

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 295
	Titles
	Appendix B
	Bibliography

	Page 296
	Titles
	. B.l Conference Proceedings

	Images
	Image 1
	Image 2

	Page 297
	Images
	Image 1

	Page 298
	Titles
	B.2 Journals

	Images
	Image 1

	Page 299
	Images
	Image 1

	Page 300
	Page 301
	Page 302
	Titles
	tual-worlds (virtual reality), and alt . hypertext as well as
	B.3 Introductions and Textbooks
	Booth, P. (1989). An Introduction to Human-Computer Interaction.
	Heckel, P. (1991). The Elements of Friendly Software Design, 2nd
	Hix, D., and Hartson, H.R. (1993). Developing User Interfaces:
	290

	Page 303
	Titles
	B.4 Handbook
	291

	Page 304
	Titles
	B.5
	Reprint Collections
	292

	Images
	Image 1

	Page 305
	Titles
	293

	Page 306
	Titles
	B.6 Important Monographs and

	Page 307
	Titles
	295

	Images
	Image 1

	Page 308
	Titles
	296

	Images
	Image 1

	Page 309
	Titles
	297

	Page 310
	Titles
	298

	Page 311
	Titles
	299

	Images
	Image 1

	Page 312
	Titles
	B.7 Guidelines
	Brown, C. M. L. (1988). Human-Computer Interface Design Guide­
	DIN (1988). VDU Work Stations: Principles of Ergonomic Dialogue

	Images
	Image 1

	Page 313
	Titles
	Style Guides
	NeXT Corporation (1992). NeXTSTEP User Interface Guidelines
	301

	Images
	Image 1

	Page 314
	Titles
	B.B \1ideotapes

	Page 315
	Page 316
	Titles
	B.9
	Other Bibliographies

	Page 317
	Page 318
	Titles
	B.10 References
	A
	306

	Page 319
	Titles
	B
	307

	Page 320
	Titles
	308

	Page 321
	Titles
	c
	309

	Page 322
	Titles
	310

	Images
	Image 1
	Image 2
	Image 3

	Page 323
	Titles
	311

	Page 324
	Titles
	D
	312

	Page 325
	Titles
	313

	Page 326
	Titles
	E
	314

	Page 327
	Titles
	F
	G
	315

	Page 328
	Titles
	316

	Page 329
	Titles
	317

	Page 330
	Titles
	H
	318

	Page 331
	Titles
	I
	J
	319

	Page 332
	Titles
	K
	320

	Page 333
	Titles
	321

	Page 334
	Titles
	L
	322

	Images
	Image 1

	Page 335
	Titles
	323

	Page 336
	Titles
	M
	324

	Page 337
	Titles
	325

	Page 338
	Titles
	326

	Page 339
	Titles
	N
	327

	Page 340
	Titles
	328

	Page 341
	Titles
	329

	Page 342
	Titles
	a
	330

	Page 343
	Titles
	p
	331

	Page 344
	Titles
	R
	332

	Page 345
	Titles
	s
	333

	Page 346
	Page 347
	Page 348
	Titles
	T
	336

	Page 349
	Titles
	v
	337

	Page 350
	Titles
	w

	Page 351
	Titles
	339

	Page 352
	Titles
	y
	z
	340

